2018.03.26 common Python-Pandas string methods,

Source: Internet
Author: User
Tags string methods

2018.03.26 common Python-Pandas string methods,

Import numpy as np
Import pandas as pd
1 # common string method-strip 2 s = pd. series (['jack', 'jill', 'jease ', 'feank']) 3 df = pd. dataFrame (np. random. randn (3, 2), columns = ['column A', 'column B '], index = range (3) 4 print (s) 5 print (df. columns) 6 7 print ('----') 8 print (s. str. lstrip (). values) # Remove the space 9 print (s. str. rstrip (). values) # Remove the space on the right 10 df. columns = df. columns. str. strip () 11 print (df. columns)

Result:

0      jack 1       jill2     jease 3      feankdtype: objectIndex([' Column A', ' Column B'], dtype='object')----['jack ' 'jill' 'jease ' 'feank']['  jack' 'jill' ' jease' 'feank']Index(['Column A', 'Column B'], dtype='object')
# String common method-replace replacement string df = pd. dataFrame (np. random. randn (3, 2), columns = ['columns A', 'columns B '], index = range (3) print (df. columns) df. columns = df. columns. str. replace ('', '-') print (df. columns) df. columns = df. columns. str. replace ('-', 'hehes', n = 1) # replace the first ''print (df. columns)

Result:

Index([' Columns A', '  Columns B'], dtype='object')Index(['-Columns-A', '--Columns-B'], dtype='object')Index(['heheColumns-A', 'hehe-Columns-B'], dtype='object')
# String common methods-split and rsplit are divided into lists in the form of s = pd. series (['a, B, C', '1, 2,3 ', ['a, C'], np. nan]) print (s) print ('----') print (s. str. split (',') print ('----') # splitprint (s. str. split (',') [0]) # index print (s. str. split (','). str [0]) # print (s. str. split (','). str. get (1) # second column # You can use the get or [] symbol to access the print (s. str. split (',', expand = True, n = 1) # n is the number of extended print (s. str. rsplit (',', expand = True, n = 1 )) # rsplit from right to left # expand can be expanded to return DataFrame # n parameter limit score # rsplit is similar to split, which works in reverse order, print ('dataframe: ') df = pd. dataFrame ({'key1': ['a, B, C', '1, 2,3 ', [', '], 'key2 ': ['a-B-C', '1-2-c', [',-,-,']}) print (df ['key2']) print (df ['key2']. str. split ('-'))

Result:
0 a, B, c
1 1, 2, 3
2 [a, c]
3 NaN
Dtype: object
----
0 [a, B, c]
1 [1, 2, 3]
2 NaN
3 NaN
Dtype: object
----
['A', 'B', 'C']
0
1 1
2 NaN
3 NaN
Dtype: object
0 B
1 2
2 NaN
3 NaN
Dtype: object
0 1
0 a B, c
1, 2, 3
2 NaN
3 NaN
0 1
0 a, B c
1, 2, 3
2 NaN
3 NaN
Dataframe:
0 a-B-c
1 1-2-c
2 [,-,-,]
Name: key2, dtype: object
0 [a, B, c]
1 [1, 2, c]
2 NaN
Name: key2, dtype: object

# String index s = pd. series (['A', 'B', 'C', 'bbhel', '123', np. nan, 'Hj ']) df = pd. dataFrame ({'key1': list ('abcdef'), 'key2': ['hee', 'fv ', 'w', 'hjja', '123 ', np. nan]}) print (s, '\ n -----') print (s. str [0]) # obtain the first string print (s. str [: 2]) # print ('-----') print (df ['key2']. str [0]) # str is indexed in the same way as the string itself.

Result:

0          A1          b2          C3    bbhello4        1235        NaN6         hjdtype: object -----0      A1      b2      C3      b4      15    NaN6      hdtype: object0      A1      b2      C3     bb4     125    NaN6     hjdtype: object-----0      h1      f2      w3      h4      15    NaNName: key2, dtype: object

 

 

 

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.