[Code segments] OpenCV3.0 SVM with C ++ interface

Source: Internet
Author: User
Tags svm

[Code segments] OpenCV3.0 SVM with C ++ interface

Talk is cheap, show you the code:

/************************************************************************//* Name   : OpenCV SVM test                                             *//* Date   : 2015/11/7                                                   *//* Author : aban                                                        *//************************************************************************/// note : the code is modified from internet. #include 
  
   #include 
   
    #include 
    
     using namespace std;#include 
     
      #include 
      
       using namespace cv;bool plotSupportVectors = true;int numTrainingPoints = 200;int numTestPoints = 2000;int size = 200;int eq = 0;// accuracyfloat evaluate(cv::Mat& predicted, cv::Mat& actual) { assert(predicted.rows == actual.rows); int t = 0; int f = 0; for (int i = 0; i < actual.rows; i++) { float p = predicted.at
       
        (i, 0); float a = actual.at
        
         (i, 0); if ((p >= 0.0 && a >= 0.0) || (p <= 0.0 && a <= 0.0)) { t++; } else { f++; } } return (t * 1.0) / (t + f);}// plot data and classvoid plot_binary(cv::Mat& data, cv::Mat& classes, string name) { cv::Mat plot(size, size, CV_8UC3); plot.setTo(cv::Scalar(255.0, 255.0, 255.0)); for (int i = 0; i < data.rows; i++) { float x = data.at
         
          (i, 0) * size; float y = data.at
          
           (i, 1) * size; if (classes.at
           
            (i, 0) > 0) { cv::circle(plot, Point(x, y), 2, CV_RGB(255, 0, 0), 1); } else { cv::circle(plot, Point(x, y), 2, CV_RGB(0, 255, 0), 1); } } cv::namedWindow(name, CV_WINDOW_KEEPRATIO); cv::imshow(name, plot);}// function to learnint f(float x, float y, int equation) { switch (equation) { case 0: return y > sin(x * 10) ? -1 : 1; break; case 1: return y > cos(x * 10) ? -1 : 1; break; case 2: return y > 2 * x ? -1 : 1; break; case 3: return y > tan(x * 10) ? -1 : 1; break; default: return y > cos(x * 10) ? -1 : 1; }}// label data with equationcv::Mat labelData(cv::Mat points, int equation) { cv::Mat labels(points.rows, 1, CV_32FC1); for (int i = 0; i < points.rows; i++) { float x = points.at
            
             (i, 0); float y = points.at
             
              (i, 1); labels.at
              
               (i, 0) = f(x, y, equation); } return labels;}void svm(cv::Mat& trainingData, cv::Mat& trainingClasses, cv::Mat& testData, cv::Mat& testClasses) { Mat traning_label(trainingClasses.rows, 1, CV_32SC1); for (int i = 0; i < trainingClasses.rows; i++){ traning_label.at
               
                (i, 0) = trainingClasses.at
                
                 (i, 0); } cv::Ptr
                 
                   svm = ml::SVM::create(); svm->setType(ml::SVM::Types::C_SVC); svm->setKernel(ml::SVM::KernelTypes::RBF); //svm->setDegree(0); // for poly svm->setGamma(20); // for poly/rbf/sigmoid //svm->setCoef0(0); // for poly/sigmoid svm->setC(7); // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR //svm->setNu(0); // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR //svm->setP(0); // for CV_SVM_EPS_SVR svm->setTermCriteria(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 1000, 1E-6)); svm->train(trainingData, ml::SampleTypes::ROW_SAMPLE, traning_label); cv::Mat predicted(testClasses.rows, 1, CV_32F); svm->predict(testData, predicted); cout << "Accuracy_{SVM} = " << evaluate(predicted, testClasses) << endl; plot_binary(testData, predicted, "Predictions SVM"); // plot support vectors if (plotSupportVectors) { cv::Mat plot_sv(size, size, CV_8UC3); plot_sv.setTo(cv::Scalar(255.0, 255.0, 255.0)); Mat support_vectors = svm->getSupportVectors(); for (int vecNum = 0; vecNum < support_vectors.rows; vecNum++){ cv::circle(plot_sv, Point(support_vectors.row(vecNum).at
                  
                   (0)*size, support_vectors.row(vecNum).at
                   
                    (1)*size), 3, CV_RGB(0, 0, 0)); } namedWindow("Support Vectors", CV_WINDOW_KEEPRATIO); cv::imshow("Support Vectors", plot_sv); }}int main(){ cv::Mat trainingData(numTrainingPoints, 2, CV_32FC1); cv::Mat testData(numTestPoints, 2, CV_32FC1); cv::randu(trainingData, 0, 1); cv::randu(testData, 0, 1); cv::Mat trainingClasses = labelData(trainingData, eq); cv::Mat testClasses = labelData(testData, eq); plot_binary(trainingData, trainingClasses, "Training Data"); plot_binary(testData, testClasses, "Test Data"); svm(trainingData, trainingClasses, testData, testClasses); waitKey(0); return 0;}
                   
                  
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   
  

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.