HDU4675 [GCD of scequence] [combination math, ferma's theorem, modulo]

Source: Internet
Author: User
Tags acos

Knowledge 1:

Ferma's theorem is an important theorem in number theory. The content of this theorem is: if p is a prime number and (a, p) = 1, then a ^ (p-1) 1_1 (mod p) if p is a prime number and a and p are mutually qualitative, then the remainder of a (p-1-level) divided by p is invariably equal to 1.

We also need to use the Fermat Theorem for Division modulo: a ^ (p-1) % p = 1;-> a ^ (p-2) % p = (1/) % p;

 

Clever 1:

For (int I = 1; I <= n; I ++)

{Int temp; scanf ("% d", & temp); sum1 [temp] ++ ;}

 

For (int j = I; j <= m; j + = I) sum + = sum1 [j];

Determine whether there is a multiple. ORZ !!!

Use this piece of code, so that when we traverse from 1 to m, the speed increases very quickly, and then it will not time out.

 

# Include <cstdio> # include <cstdlib> # include <cstring> # include <cmath> # include <ctime> # include <iostream> # include <algorithm> # include <string> # include <queue> # include <set> # include <map> # include <vector> # include <assert. h> using namespace std; # define lowbit (I) (I &-I) # define sqr (x) * (x )) # define enter printf ("\ n") # define is_sqr (x) (x & (x-1) # define pi acos (-1.0) # Define clr (x) memset (x, 0, sizeof (x) # define fp1 freopen ("in.txt", "r", stdin) # define fp2 freopen ("out.txt", "w", stdout) # define pb push_back typedef _ int64 LL; const double eps = 1e-7; const double DINF = 1e100; const int INF = 1000000006; const ll linf = 000000000000000005ll; const int MOD = (int) 1e9 + 7; const int maxn = 300005; template <class T> inline T Min (T a, T B) {return a <B? A: B;} template <class T> inline T Max (T a, T B) {return a> B? A: B;} template <class T> inline T Min (T a, T B, T c) {return min (a, B), c );} template <class T> inline T Max (T a, T B, T c) {return max (a, B), c);} LL f [maxn], e [maxn], a [maxn], ans [maxn], sum1 [maxn]; LL quick_pow (LL a, LL B) // B power of, fast Power modulo {LL ret = 1; while (B) {if (B & 1) ret = (ret * a) % MOD; B/= 2; a = (a * a) % MOD;} return ret % MOD;} LL cal (LL n, LL k) {if (k = 0 | n = k) return 1; return (f [n] * e [k] % MOD) * e [n-k] % MOD; // note Operation Sequence} // some variables do not use C99 in the future. int main () {f [0] = e [0] = 1; for (int I = 1; I <= maxn; I ++) {f [I] = f [I-1] * I % MOD; e [I] = quick_pow (f [I], MOD-2);} int n, m, k; while (scanf ("% d", & n, & m, & k )! = EOF) {clr (sum1); for (int I = 1; I <= n; I ++) {int temp; scanf ("% d", & temp ); sum1 [temp] ++;} for (int I = m; I> = 1; I --) // do not perform the m/I cycle every time when writing backwards {int sum = 0; for (int j = I; j <= m; j + = I) sum + = sum1 [j]; if (sum <n-k) // k values are different, and n-k values are the same. {Ans [I] = 0; continue;} ans [I] = (cal (sum, n-k) * quick_pow (m/I-1, sum-(n-k) % MOD) * quick_pow (m/I, n-sum) % MOD; for (int j = 2 * I; j <= m; j + = I) ans [I] = (ans [I]-ans [j] + MOD) % MOD;} for (int I = 1; I <m; I ++) printf ("% lld", ans [I]); printf ("% lld \ n", ans [m]);} return 0 ;} # include <cstdio> # include <cstdlib> # include <cstring> # include <cmath> # include <ctime> # include <iostream> # include <algorithm> # include <s Tring> # include <queue> # include <set> # include <map> # include <vector> # include <assert. h> using namespace std; # define lowbit (I) (I &-I) # define sqr (x) * (x )) # define enter printf ("\ n") # define is_sqr (x) (x & (x-1) # define pi acos (-1.0) # define clr (x) memset (x, 0, sizeof (x) # define fp1 freopen ("in.txt", "r", stdin) # define fp2 freopen ("out.txt", "w ", stdout) # define pb push_backtypedef _ int64 LL; const double eps = 1e-7; const double DINF = 1e100; const int INF = 1000000006; const ll linf = 000000000000000005ll; const int MOD = (int) 1e9 + 7; const int maxn = 300005; template <class T> inline T Min (T a, T B) {return a <B? A: B;} template <class T> inline T Max (T a, T B) {return a> B? A: B;} template <class T> inline T Min (T a, T B, T c) {return min (a, B), c );} template <class T> inline T Max (T a, T B, T c) {return max (a, B), c);} LL f [maxn], e [maxn], a [maxn], ans [maxn], sum1 [maxn]; LL quick_pow (LL a, LL B) // B power of, fast Power modulo {LL ret = 1; while (B) {if (B & 1) ret = (ret * a) % MOD; B/= 2; a = (a * a) % MOD;} return ret % MOD;} LL cal (LL n, LL k) {if (k = 0 | n = k) return 1; return (f [n] * e [k] % MOD) * e [n-k] % MOD; // note the Operation Sequence} // In the future, some variables still do not use C99 in writing int main () {f [0] = e [0] = 1; for (int I = 1; I <= maxn; I ++) {f [I] = f [I-1] * I % MOD; e [I] = quick_pow (f [I], MOD-2);} int n, m, k; while (scanf ("% d", & n, & m, & k )! = EOF) {clr (sum1); for (int I = 1; I <= n; I ++) {int temp; scanf ("% d", & temp ); sum1 [temp] ++;} for (int I = m; I> = 1; I --) // do not perform the m/I cycle every time when writing backwards {int sum = 0; for (int j = I; j <= m; j + = I) sum + = sum1 [j]; if (sum <n-k) // k values are different, and n-k values are the same. {Ans [I] = 0; continue;} ans [I] = (cal (sum, n-k) * quick_pow (m/I-1, sum-(n-k) % MOD) * quick_pow (m/I, n-sum) % MOD; for (int j = 2 * I; j <= m; j + = I) ans [I] = (ans [I]-ans [j] + MOD) % MOD;} for (int I = 1; I <m; I ++) printf ("% lld", ans [I]); printf ("% lld \ n", ans [m]);} return 0 ;}

 

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.