HDU_5141 LIS again (lis)
Portal: HUD_5141
LIS again
Problem DescriptionA numeric sequence of ai is ordered if A1. Let the subsequence of the given numeric sequence ( A1, a2 ,..., AN ) Be any sequence ( Ai1, ai2 ,..., AiK ), Where 1 ≤ i1 . For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, eg. (1, 7), (3, 4, 8) and other others.
S [I, j] indicates ( Ai, ai + 1, ai + 2 ,..., Aj ).
Your program, when given the numeric sequence ( A1, a2 ,..., AN ), Must find the number of pair (I, j) which makes the length of the longest ordered subsequence of S [I, j] equals to the length of the longest ordered subsequence ( A1, a2 ,..., AN ).
InputMulti test cases (about 100), every case occupies two lines, the first line contain n, then second line contain n numbers A1, a2 ,..., AN Separated by exact one space.
Process to the end of file.
[Technical Specification]
1 ≤ n ≤100000
0 ≤ ai ≤ 1000000000
OutputFor each case,. output the answer in a single line.
Sample Input
31 2 322 1
Sample Output
13
Question: Here is a series. The longest ascending sequence is lis, and the number of ranges in which the length of the ascending sequence is equal to lis.
Idea: The line segment tree maintains the longest ascending sequence ending with I, and requires that the start point be right-aligned as much as possible.
Code:
#include
#include
#include
#include#define ls(p) p<<1#define rs(p) p<<1|1using namespace std;typedef long long LL;const int N=100010;int a[N],b[N];int dp[N];int sta[N],en[N];int len,st;struct node{ int l,r; int len,sta;}tree[N<<2];void pushup(int p){ if(tree[ls(p)].len>tree[rs(p)].len) { tree[p].len=tree[ls(p)].len; tree[p].sta=tree[ls(p)].sta; } else if(tree[rs(p)].len>tree[ls(p)].len) { tree[p].len=tree[rs(p)].len; tree[p].sta=tree[rs(p)].sta; } else tree[p].sta=max(tree[ls(p)].sta,tree[rs(p)].sta);}void build(int p,int l,int r){ tree[p].l=l;tree[p].r=r; tree[p].len=-1; tree[p].sta=-1; if(l==r) return; int m=(l+r)>>1; build(ls(p),l,m); build(rs(p),m+1,r);}void update(int p,int pos,int len,int st){ if(tree[p].l==tree[p].r) { if(tree[p].len==len&&tree[p].sta
>1; if(pos<=m) update(ls(p),pos,len,st); else update(rs(p),pos,len,st); pushup(p);}void query(int p,int l,int r){ if(l<=tree[p].l&&tree[p].r<=r) { if(tree[p].len>len) { len=tree[p].len; st=tree[p].sta; } else if(tree[p].len==len&&st
>1; if(l<=m) query(ls(p),l,r); if(r>m) query(rs(p),l,r);}int main(){ int n; while(scanf("%d",&n)==1) { LL ret=0; int cnt; for(int i=1;i<=n;i++) { scanf("%d",a+i); b[i]=a[i]; } if(n==1) { printf("1\n"); continue; } sort(b+1,b+1+n); cnt=unique(b+1,b+1+n)-(b+1); dp[1]=sta[1]=1; build(1,1,cnt); int mpp; int lest=-1; for(int i=1;i<=n;i++) { len=st=-1; mpp=lower_bound(b+1,b+1+cnt,a[i])-b; if(mpp==1) { dp[i]=1; sta[i]=i; } else query(1,1,mpp-1); if(st==-1) { dp[i]=1; sta[i]=i; } else { dp[i]=len+1; sta[i]=st; } //cout<
=1;i--) { if(dp[i]==lest) { en[i]=last-1; last=i; } } for (int i=1;i<=n;++i) { if (dp[i]==lest) ret+=(LL)sta[i]*(LL)(en[i]-i+1); } printf("%I64d\n", ret); } return 0;}