K Nearest Neighbor Algorithm python implementation--"machine learning Combat"

Source: Internet
Author: User
Tags ranges

1 " "2 Created on Nov3 knn:k Nearest Neighbors4 5 Input:inX:vector to compare to existing dataset (1xN)6 dataset:size m data set of known vectors (NxM)7 Labels:data Set labels (1xM vector)8 K:number of neighbors to use for comparison (should is an odd number)9 Ten output:the Most Popular class label One  A @author: Liu Chuanfeng - " " - Importoperator the ImportNumPy as NP - ImportMatplotlib.pyplot as Plt -  - defclassify0 (InX, DataSet, labels, k): +Datasetsize =Dataset.shape[0] -Diffmat = Np.tile (InX, (datasetsize,1))-DataSet +Sqdiffmat = Diffmat * * 2 ASqdistances = Sqdiffmat.sum (Axis=1) atdistances = sqdistances * * 0.5 -Sorteddistindicies =Distances.argsort () -ClassCount = {} -      forIinchRange (k): -Voteilabel =Labels[sorteddistindicies[i]] -Classcount[voteilabel] = Classcount.get (voteilabel,0) + 1 inSortedclasscount = sorted (Classcount.items (), key = Operator.itemgetter (1), reverse =True) -     returnSortedclasscount[0][0] to  + defFile2matrix (filename): -FR =open (filename) theArraylines =Fr.readlines () *NumberOfLines =Len (arraylines) $Returnmat = Np.zeros ((NumberOfLines, 3))Panax NotoginsengClasslabelvector = [] -index =0 the      forLineinchArraylines: +line =Line.strip () AListfromline = Line.split ('\ t') theReturnmat[index,:] = Listfromline[0:3] +Classlabelvector.append (int (listfromline[-1])) -Index + = 1 $     returnReturnmat, Classlabelvector $  - defAutonorm (dataSet): -Maxvals =Dataset.max (0) theMinvals =dataset.min (0) -ranges = Maxvals-minvalsWuyim =Dataset.shape[0] theNormdataset = (Dataset-np.tile (minvals, (M, 1))/Np.tile (ranges, (M, 1)) -     returnnormdataset, ranges, minvals Wu  - defdatingclasstest (): AboutHoRatio = 0.10 $Datingdatamat, datinglabels = File2matrix ('DatingTestSet2.txt') -Normmat, ranges, minvals =autonorm (Datingdatamat) -m =Normmat.shape[0] -numtestvecs = Int (M *hoRatio) AErrorcount = 0.0 +      forIinchRange (numtestvecs): theClassifyresult = Classify0 (Normmat[i,:], normmat[numtestvecs:m,:], datinglabels[numtestvecs:m], 3) -         Print('Theclassifier came back with:%d, the real answer is:%d'%(Classifyresult, datinglabels[i])) $         if(Classifyresult! =Datinglabels[i]): theErrorcount + = 1.0 the         Print('The total error rate is:%.1f%%'% (Errorcount/float (numtestvecs) * 100)) the  the defClassifyperson (): -Resultlist = [' not at all','In small doses','In large doses'] inPercenttats = float (Input ("percentage of time spent playing video games?")) theFfmiles = float (Input ("frequent flier miles earned per year?")) theIcecream = float (Input ("liters of ice cream consumed per year?")) AboutDatingdatamat, datinglabels = File2matrix ('DatingTestSet2.txt') theNormmat, ranges, minvals =autonorm (Datingdatamat) theInarr =Np.array ([Ffmiles, Percenttats, icecream]) theClassifyresult = Classify0 ((inarr-minvals)/ranges, Normmat, Datinglabels, 3) +     Print("You'll probably like this Persoon:", resultlist[classifyresult-1]) -  the #Unit test of Func:file2matrix ()Bayi #Datingdatamat, datinglabels = File2matrix (' datingTestSet2.txt ') the #print (Datingdatamat) the #print (datinglabels) -  - #Usage of figure construction of Matplotlib the #fig=plt.figure () the #ax = fig.add_subplot (111) the #Ax.scatter (datingdatamat[:,1], datingdatamat[:,2], 15.0*np.array (datinglabels), 15.0*np.array (DatingLabels))  the #plt.show () -  the #Unit test of Func:autonorm () the #Normmat, ranges, minvals = Autonorm (Datingdatamat) the #print (Normmat)94 #print (ranges) the #print (minvals) the  the datingclasstest ()98Classifyperson ()
Output:

Theclassifier came back with:3, the real answer Is:3
The total error rate is:0.0%
Theclassifier came back with:2, the real answer Is:2
The total error rate is:0.0%
Theclassifier came back with:1, the real answer is:1
The total error rate is:0.0%

...

Theclassifier came back with:2, the real answer Is:2
The total error rate is:4.0%
Theclassifier came back with:1, the real answer is:1
The total error rate is:4.0%
Theclassifier came back with:3, the real answer is:1
The total error rate is:5.0%

Percentage of time spent playing video games?10
Frequent flier miles earned per year?10000
Liters of ice cream consumed per year?0.5
You'll probably like this persoon:in small doses

Reference:

"Machine learning Combat"

K Nearest Neighbor Algorithm python implementation--"machine learning Combat"

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.