[Mathematics from the beginning] No. 214 quarter with a computer to the college Entrance Examination (VI)

Source: Internet
Author: User
Tags acos

plot summary:
[Machine Xiao Wei] in [engineer Ah Wei] escorted into the [nine turn elixir] of the turn of the practice. Imagine a scenario:
If you were allowed to take an Internet-connected computer to the college entrance exam, would you give up choosing a hand-held calculator and a draft book?
? Ah Wei decided and Xiao Wei to try to use the computer to calculate high questions will be how the feeling.

Drama Start:

Star Calendar May 20, 2016 11:40:58, the Milky Way Galaxy Earles the Chinese Empire Jiangnan Line province.
[Engineer Ah Wei] is working with [machine Xiao Wei] to do 2005 years of Jiangsu Province Mathematics college entrance exam questions].




Overall, the difficulty and the last year flat, are very kind,

But the last year a lot of questions are like a joke, this time slightly better, but the calculation is also very small.

Then the biggest change is to break the 22 pattern of the last n years, with the reduction of a subjective entitled cost, added two blank questions.



<span style= "FONT-SIZE:18PX;" >def tmp1 ():    A = Set ([1, 2]);    B = Set ([+ +]);    C = Set ([2,3,4]);    D = (a.intersection (B)). Union (C);    Print (D);    E = (A & B) | C;    Print (E);>>> {1, 2, 3, 4}{1, 2, 3, 4}</span>





<span style= "FONT-SIZE:18PX;"                    >//2if (1) {var r = 20;                      Config.setsector (1,1,1,1);                    Config.graphpaper2d (0, 0, R);                                      Config.axis2d (0, 0,180);                  Axis set var ScaleX = 2*r, ScaleY = 2*r;                   var SpaceX = 2, SpaceY = 2;                  var XS = -10, XE = 10;                  var YS = -20, YE = 20;                    Config.axisspacing (XS, XE, SpaceX, ScaleX, ' X ');                                        Config.axisspacing (YS, YE, SpaceY, ScaleY, ' Y ');                    var transform = new transform ();                                    Store the points on the function image var a = [], b = [], c = [], d = []; Function description//Greek alphabet to be displayed (save this for ctrl c/v//αβγδεζηθικλμνξ0πρστυφχψω//αβγδεζηθικλ                Μνξοπρστυφχψωvar f1 = ' y = 2^[1-x]+3 's inverse function ', F2 = ' y = 2^[1-x]+3 ', F3 = ', F4 = '; var y1 = y2 = 0;//(x+2) ^2) ^0.5for (var x = XS; x <= XE; x+=0.2) {y1 = Math.pow (2, 1-x) +3;a.push ([Y1, X]); B.push ([x, Y1]);                                  }//Store temporary array var tmp = []; Show transform if (A.length > 0) {a = Transform.scale (Transform.translate (A, 0, 0), scalex/s                     Pacex, Scaley/spacey);                        function 1 TMP = [].concat (a);                       Shape.pointdraw (TMP, ' red ');                        TMP = [].concat (a);                                            Shape.multilinedraw (tmp, ' Pink ');                    Plot.setfillstyle (' Red ');                  Plot.filltext (F1, 100,-90, 200); }//Show transform if (B.length > 0) {b = Transform.scale (transform.translate (b, 0, 0                     ), Scalex/spacex, Scaley/spacey);                        function 1 TMP = [].concat (b); Shape.pointdraw (TMP, ' BLue ');                        TMP = [].concat (b);                                            Shape.multilinedraw (tmp, ' #2288FF ');                    Plot.setfillstyle (' Blue ');                  Plot.filltext (F2, 100,-120, 200);                }} var f1 = ' Y = Math.log (2/(x-3))/math.log (2) ', F2 = ' y = 2^[1-x]+3 ', F3 = ', F4 = '; var y1 = y2 = 0;//(n (x+2) ^2) ^0.5for (var x = XS; x <= XE; x+=0.2) {y1 = Math.log (2/(x-3))/math.log (2) A.push ([x, Y1])        ; } </span>






<span style= "FONT-SIZE:18PX;"    > #题4def tmp4 (): panel = panel ();    #正三棱柱ABC-a1b1c1 A, B, C = [0, 0, 0], [2,0,0], [1, 3**0.5, 0];    A1, B1, C1 = [0, 0, 1], [2,0,1], [1, 3**0.5, 1];    #平面ABC的法向量 norm_abc = Panel.normal ([A, B, C]);    Print (NORM_ABC);    #平面ABC的一般式方程 genre_abc = Panel.genreform ([A, B, C]);    Print (GENRE_ABC);    #占A到平面A1BC的距离 DIS_A_A1BC = Panel.pt2panel (A, [A1, B, C]); Print (DIS_A_A1BC);>>> [0.0, 0, 3.4641016151377544][0.0, 0, 3.4641016151377544, -0.0]0.8660254037844386#### @ The plane class in the analytical geometry of the usage plane, containing a set of related calculation methods # @author mw# @date May 20, 2016 Friday 09:02:31 # @param # @return # # # # # # # # # # # # # #涉及到平面, all coordinate points are spatial coordinates system [x, Y, z] form class Panel (): #平面的法向量, determined by [p_[1], p_[2], p_[3]] unique flat def normal (self, plain): #平面上的三个点 poi        Nt_1, point_2, point_3 = Plain[0], plain[1], plain[2];        X_1, y_1, z_1 = Point_1[0], point_1[1], point_1[2];        X_2, y_2, z_2 = Point_2[0], point_2[1], point_2[2]; X_3, y_3, z_3 = Point_3[0], point_3[1], point_3[2];        #中间变量 a = (y_2-y_1) * (z_3-z_1)-(y_3-y_1) * (z_2-z_1);        b = (z_2-z_1) * (x_3-x_1)-(z_3-z_1) * (x_2-x_1);        c = (x_2-x_1) * (y_3-y_1)-(x_3-x_1) * (y_2-y_1);    return [A, b, c];        #平面一般式方程, the four parameters a,b,c,d def genreform (self, plain) are obtained from three flat pastry ax+by+cz+d=0: Norm = self.normal (plain);        A, b, C = norm[0], norm[1], norm[2];        #平面上的三个点 point_1, point_2, point_3 = Plain[0], plain[1], plain[2];        X_1, y_1, z_1 = Point_1[0], point_1[1], point_1[2];        X_2, y_2, z_2 = Point_2[0], point_2[1], point_2[2];                                          X_3, y_3, z_3 = Point_3[0], point_3[1], point_3[2];        D =-(a*x_1+b*y_1+c*z_1);    return [A, B, C, d];        #点到平面的距离 def pt2panel (self, point, Panel): #平面一般式的参数 A, B, c, d = self.genreform (panel);        X, y, z = point[0], point[1], point[2];        Distance = ABS ((a*x+b*y+c*z+d)/(a**2+b**2+c**2) **0.5); Return distance;</span>



<span style= "FONT-SIZE:18PX;" > #题5def tmp5 ():    #三角形ABC, give one more side trial calculation    TRI_ABC = Geo.solvetriangle ([3, 2, '? ', '? ');    Print (TRI_ABC);    BC, AC, AB = Tri_abc[0], tri_abc[1], tri_abc[2];    #周长    perimeter = bc+ac+ab;    print (perimeter);    #角B, converted to radians    B = Tri_abc[4]/180*math.pi;    #选项, used to compare    choice = [4*1.732*math.sin (B+MATH.PI/3) +3,              4*1.732*math.sin (B+MATH.PI/6) +3,              6*math.sin (B +MATH.PI/3) +3,              6*math.sin (B+MATH.PI/6) +3              ];    Answer = ' ABCD ';    For I in range (4):        If ABS (choice[i]-perimeter) < 1e-6:            print (answer[i]);>>> [3, 2, 3.4494897427831783, 60.0, 35.264389682754654, 84.73561031724536]8.449489742783179d</span>




<span style= "FONT-SIZE:18PX;" >//7if (1) {analyze = new dataanalyze (); a = [9.4, 9.4, 9.4, 9.6, 9.7];hint (Analyze.average (a)); Hint (analyze.variance ( a));}        9.50.015999999999999886# 7def TMP7 (): Analyze = Dataanalyze ();    Array = [9.4, 8.4, 9.4, 9.9, 9.6, 9.4, 9.7];    Array = sorted (array);    Array = array[1:-1];    print (array);    Array = Analyze.format (array);    Sum_ = analyze.sum (array);    Print (SUM_);    Aver_ = analyze.average (array);    Print (' mean ', aver_);    Variance = analyze.variance (array);    Print (' Variance ', variance);    #numpy数组的属性 print (Array.ndim);    Print (Array.shape);    Print (array.size);    Print (Array.dtype);    Print (array.itemsize); Print (Array.data);>>> [9.4, 9.4, 9.4, 9.6, 9.7]47.5 mean 9.5 variance 0.0161 (5,) 5float648<memory at 0x0205ad50>### # @usage Centralized Analysis class # @author mw# @date May 20, 2016 Friday 10:06:47 # @param # @return # # # #class Dataanalyze (): #由于nump The method interface of Y is only open to Narray, so the array should be formatted first #对于自己的数组而言, this method must be called first, in order to use the NumPy method DEF format (self, array): Return Numpy.array (array);    #求和 def sum (self, array): Return Array.sum ();            #均值 def average (self, array): Return Self.sum (Array)/len (array);        #方差 def variance (self, array): Array_ = Array*array;        Sum_ = Array_.sum ();        Aver_ = self.average (array);        result = Sum_/len (array)-aver_**2;        return result; #标准差 def RMS (self, Array): Return (self.variance) **0.5;</span>






<span style= "FONT-SIZE:18PX;" > #题9def tmp9 ():    a = [' X ', ' 2 '];    A = Alg.strformat (a);    A = Alg.strpow_n (A, 5);    A = Alg.strcombine (a);    Print (a);>>> [' (1) *x^[5] ', ' (Ten) *x^[4] ', ' (+) *x^[3] ', ' (+) *x^[2] ', ' () *x^[1] ', ' (+) ']</span>









<span style= "FONT-SIZE:18PX;" > #题16def tmp16 ():    print (Math.log (0.618)/math.log (3));</span>










<span style= "FONT-SIZE:18PX;" > #题20def tmp20 ():    #甲, B hit    p_1 = 2/3;    p_2 = 3/4;    # (1)    print (1-p_1**4);    # (2) There is a combination number multiplied    by a = Alg.combination (4, 2) *p_1**2* (1-p_1) **2;    b = Alg.combination (4, 3) *p_2**3* (1-p_2);    Print (a*b);    # (3)    A12 = N (1-p_2) **2; #前两次, as long as not all do not hit    a3 = p_2; #第三次, you must hit    A45 = (1-p_2) **2; #第四五次, you must not    print (a12* A3*A45);>>> 0.80246913580246910.125000000000000030.0439453125</span>



<span style= "FONT-SIZE:18PX;" > #题21def tmp21 ():    #已知边 as    = AB = AE = 2;    BC = DE = 1.732;    #已知角    A = C = D = +;    #解三角形, the array is    tri_abs = Geo.solvetriangle (['? ', as, AB, '? '] in the opposite side of the diagonal);    BS = tri_abs[0];    ES = BS;    Tri_abe = Geo.solvetriangle (['? ', AE, AB, A, '? ', '? ']);    be = tri_abe[0];    Tri_bes = Geo.solvetriangle ([ES, BS, be, '? ', '? ', '? ']);    Print (' CD with AB angle: ', tri_bes[3]);>>> CD with AB angle: 52.23875609296496>>> math.acos (6**0.5/4) *180/ 3.14252.23198356916861>>> Math.acos (6**0.5/4) *180/math.pi52.23875609296496    # (2)    #角B    B = ( 540-a-c-d)/2;    #tri_BCD = Geo.solvetriangle ([CD, '? ', BC, '? ', C, '? ']);    Print (B);    "    " >>>     CD with AB angle: 52.23875609296496    90.0    ' </span>






The end of this section, to know how to funeral, please see tell.

[Mathematics from the beginning] No. 214 quarter with a computer to the college Entrance Examination (VI)

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.