Whac-a-Mole
Time Limit: 2000 MS Memory Limit: 65536 K
Total Submissions: 2993 Accepted: 904
Description
While visiting a traveling fun fair you suddenly have an urge to break the high score in the Whac-a-Mole game. The goal of the Whac-a-Mole game is... Well... Whack moles. With a hammer. To make the job easier you have first consulted the fortune teller and now you know the exact appearance patterns of the moles.
The moles appear out of holes occupying the n2 integer points (x, y) satisfying 0 ≤ x, y <n in a two-dimen=coordinate system. at each time step, some moles will appear and then disappear again before the next time step. after the moles appear but before they disappear, you are able to move your hammer in a straight line to any position (x2, y2) that is at distance at most d from your current position (x1, y1 ). for simplicity, we assume that you can only move your hammer to a point having integer coordinates. A mole is whacked if the center of the hole it appears out of is located on the line between (x1, y1) and (x2, y2) (including the two endpoints ). every mole whacked earns you a point. when the game starts, before the first time step, you are able to place your hammer anywhere you see fit.
Input
The input consists of several test cases. each test case starts with a line containing three integersn, d and m, where n and d are as described above, andm is the total number of moles that will appear (1 ≤ n ≤ 20, 1 ≤ d ≤ 5, and 1 ≤ m ≤ 1000 ). then follow m lines, each containing three integersx, y and t giving the position and time of the appearance of a mole (0 ≤ x, y <n and 1 ≤ t ≤ 10 ). no two moles will appear at the same place at the same time.
The input is ended with a test case where n = d = m = 0. This case shocould not be processed.
Output
For each test case output a single line containing a single integer, the maximum possible score achievable.
Sample Input
4 2 6
0 0 1
3 1 3
0 1 2
0 2 2
1 0 2
2 0 2
5 4 3
0 0 1
1 2 1
2 4 1
0 0 0 Sample Output
4
2 Source
Nordic 2006
The dynamic regression equation I actually use is dp [x1] [y1] [x2] [y2] [t] = max (dp [x3] [y3] [x1] [y1] [t2] t2 <t) + The time between (x1, y1) and (x2, y2) is the number of t. If the previous two dimensions of dp are useless, they are removed. You only need to keep the maximum value of dp, it forms the dp [x2] [y2] [t] = max (dp [x1] [y1] [t2] t2 <t) + (x1, y1) and (x2, y2) the number of times t;
Note that he can go to negative coordinates.
Having been wandering between tle and wa, we finally got stuck.
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> #include <cmath> #define NUM 1100 #define N 33 #define M 11 using namespace std; int dp[N][N][M],Max[N][N][M]; int sum[N][N][N][N][M]; struct num { int x,y,t; }a[NUM]; bool cmp(num p1,num p2) { return p1.x<p2.x; } int main() { // freopen("data.in","r",stdin); int n,d,m; while(scanf("%d %d %d",&n,&d,&m)!=EOF) { if(!n&&!m&&!d) { break; } for(int i=1;i<=m;i++) { scanf("%d %d %d",&a[i].x,&a[i].y,&a[i].t); a[i].x+=5; a[i].y+=5; } n=n+7; sort(a+1,a+m+1,cmp); for(int x1=0;x1<=n-1;x1++) { for(int y1=0;y1<=n-1;y1++) { for(int x2=0;x2<=n-1;x2++) { for(int y2=0;y2<=n-1;y2++) { for(int t=1;t<=10;t++) { sum[x1][y1][x2][y2][t]=0; } } } } } for(int x1 = 0;x1<=n-1;x1++) { for(int y1=0;y1<=n-1;y1++) { for(int x2=x1;x2<=n-1&&x2<=x1+d;x2++) { int y2=0; if(x2==x1) { y2 = y1; } for(;y2<=n-1&&y2<=y1+d;y2++) { if(((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))>d*d) { continue; } for(int i=1;i<=m;i++) { int x = a[i].x; int y = a[i].y; int t = a[i].t; if(x>x2) { break; } if(x1==x2&&y1==y2&&x==x1&&y==y1) { sum[x1][y1][x2][y2][t]++; continue; }else if(x1==x2&&y1==y2) { continue; } if(x==x1&&x==x2&&y>=y1&&y<=y2) { sum[x1][y1][x2][y2][t]++; sum[x2][y2][x1][y1][t]++; continue; } double k = (double)(y2-y1)/(double)(x2-x1); double D = (double)(y2) - k *(double)(x2); if(fabs(k*(double)(x)+D-(double)(y))<=1e-7&&x>=x1&&x<=x2) { sum[x1][y1][x2][y2][t]++; sum[x2][y2][x1][y1][t]++; } } } } } } memset(dp,0,sizeof(dp)); memset(Max,0,sizeof(Max)); for(int t=1;t<=10;t++) { for(int x1 =0;x1<=n-1;x1++) { for(int y1=0;y1<=n-1;y1++) { for(int x2=0;x2<=n-1;x2++) { for(int y2=0;y2<=n-1;y2++) { //dp[x1][y1][x2][y2][t]; if(((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))>d*d) { continue; } int mmax=0; for(int kb=1;kb<=t-1;kb++) { mmax=max(mmax,dp[x1][y1][kb]); } Max[x2][y2][t]=max(Max[x2][y2][t],mmax+sum[x1][y1][x2][y2][t]); } } } } for(int x2=0;x2<=n-1;x2++) { for(int y2=0;y2<=n-1;y2++) { dp[x2][y2][t] = Max[x2][y2][t]; } } } int res = 0; for(int i=0;i<=n-1;i++) { for(int j=0;j<=n-1;j++) { for(int t=1;t<=10;t++) { res = max(res,dp[i][j][t]); } } } printf("%d\n",res); } return 0; } #include <iostream>#include <algorithm>#include <cstring>#include <cstdio>#include <cmath>#define NUM 1100#define N 33#define M 11using namespace std;int dp[N][N][M],Max[N][N][M];int sum[N][N][N][N][M];struct num{ int x,y,t;}a[NUM];bool cmp(num p1,num p2){ return p1.x<p2.x;}int main(){ // freopen("data.in","r",stdin); int n,d,m; while(scanf("%d %d %d",&n,&d,&m)!=EOF) { if(!n&&!m&&!d) { break; } for(int i=1;i<=m;i++) { scanf("%d %d %d",&a[i].x,&a[i].y,&a[i].t); a[i].x+=5; a[i].y+=5; } n=n+7; sort(a+1,a+m+1,cmp); for(int x1=0;x1<=n-1;x1++) { for(int y1=0;y1<=n-1;y1++) { for(int x2=0;x2<=n-1;x2++) { for(int y2=0;y2<=n-1;y2++) { for(int t=1;t<=10;t++) { sum[x1][y1][x2][y2][t]=0; } } } } } for(int x1 = 0;x1<=n-1;x1++) { for(int y1=0;y1<=n-1;y1++) { for(int x2=x1;x2<=n-1&&x2<=x1+d;x2++) { int y2=0; if(x2==x1) { y2 = y1; } for(;y2<=n-1&&y2<=y1+d;y2++) { if(((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))>d*d) { continue; } for(int i=1;i<=m;i++) { int x = a[i].x; int y = a[i].y; int t = a[i].t; if(x>x2) { break; } if(x1==x2&&y1==y2&&x==x1&&y==y1) { sum[x1][y1][x2][y2][t]++; continue; }else if(x1==x2&&y1==y2) { continue; } if(x==x1&&x==x2&&y>=y1&&y<=y2) { sum[x1][y1][x2][y2][t]++; sum[x2][y2][x1][y1][t]++; continue; } double k = (double)(y2-y1)/(double)(x2-x1); double D = (double)(y2) - k *(double)(x2); if(fabs(k*(double)(x)+D-(double)(y))<=1e-7&&x>=x1&&x<=x2) { sum[x1][y1][x2][y2][t]++; sum[x2][y2][x1][y1][t]++; } } } } } } memset(dp,0,sizeof(dp)); memset(Max,0,sizeof(Max)); for(int t=1;t<=10;t++) { for(int x1 =0;x1<=n-1;x1++) { for(int y1=0;y1<=n-1;y1++) { for(int x2=0;x2<=n-1;x2++) { for(int y2=0;y2<=n-1;y2++) { //dp[x1][y1][x2][y2][t]; if(((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1))>d*d) { continue; } int mmax=0; for(int kb=1;kb<=t-1;kb++) { mmax=max(mmax,dp[x1][y1][kb]); } Max[x2][y2][t]=max(Max[x2][y2][t],mmax+sum[x1][y1][x2][y2][t]); } } } } for(int x2=0;x2<=n-1;x2++) { for(int y2=0;y2<=n-1;y2++) { dp[x2][y2][t] = Max[x2][y2][t]; } } } int res = 0; for(int i=0;i<=n-1;i++) { for(int j=0;j<=n-1;j++) { for(int t=1;t<=10;t++) { res = max(res,dp[i][j][t]); } } } printf("%d\n",res); } return 0;}