ImportPandas as PDImportNumPy as Npdf= PD. DataFrame (Np.random.randn (5, 3), index=['a','C','e','F','h'],columns=[' One',' Both','three']) DF= Df.reindex (['a','b','C','D','e','F','g','h'])Print(DF)Print('############### #缺失值判断 ######################')Print('the missing values of the--------series are judged---------')Print(df[' One'].isnull ())
‘‘‘
The missing values of the--------series are judged---------
A False
b truec falsed truee falsef falseg trueh falsename:one, Dtype:bool
" " Print ('---------output series missing values and index--------') Print (df['one'][df['one'].isnull ()])
‘‘‘
---------output series missing values and indexes--------b NaNd NaNg nanname:one, Dtype:float64
'print('--------dataframe missing value---------')print (Df.isnull ())
‘‘‘
--------Dataframe Missing value---------one Threea false false Falseb True True Truec false false falsed true true truee false Falsef False false Falseg true true trueh false false
"print('--------The missing value and index of the output dataframe---------'= Df[df.isnull ( ). values==True]print(data[~data.index.duplicated ()))
‘‘‘
Missing values and indexes--------output dataframe---------One, threeb nan nan NaNd nan NaN NaNg nan nan nan
'print('--------output dataframe column with missing values---------')Print (Df.isnull (). any ())
‘‘‘
--------output dataframe columns with missing values---------one truetwo truethree truedtype:bool
"print('############### #缺失值过滤 ######################') Print('missing value filter for--------series---------')print(df[') One'].isnull ())
‘‘‘
############### #缺失值过滤 ######################---------a falseb truec --------Series missing values falsed truee falsef falseg trueh falsename:one, Dtype:bool
'print('--------Delete missing data using the Dropna method, return a deleted series--------') Print (df['one'].dropna ())
‘‘‘
--------Use the Dropna method to delete missing data and return a deleted series--------a -0.211055c -0.870090e -0.203259 F 0.490568h 1.437819name:one, Dtype:float64
'print('--------Dataframe missing values filter---------')print (Df.dropna ())
‘‘‘
--------Dataframe Missing Value filter---------One, threea-0.211055-2.869212 0.022179C- 0.870090-0.878423 1.071588e-0.203259 0.315897 0.495306F 0.490568-0.968058- 0.999899H 1.437819-0.370934-0.482307
"print('-------is deleted when the line is all Nan, the parameter how default is any, the missing value is deleted--------') Print(Df.dropna (how="all"))
‘‘‘
-------when the line is all Nan, delete, the parameter how default is any, with the missing value to delete--------one of the threea-0.211055-2.869212 0.022179c-0.870090-0.878423 1.071588e-0.203259 0.315897 0.495306F 0.490568- 0.968058-0.999899H 1.437819-0.370934-0.482307
" print ( ' ' print ( ' ------Specify a special value to fill the missing value------- " Span style= "color: #000000;" >) print (Df.fillna (0))
"
############### #缺失值填充 ######################------Specify special values to fill missing values------- one, threea-0.211055-2 .869212 0.022179 b 0.000000 0.000000 0.000000 c-0.870090-0.878423 1.071588 D 0.000000 0.000000 0. 000000 e-0.203259 0.315897 0.495306 f 0.490568-0.968058-0.999899 g 0.000000 0.000000 0.000000 H 1 .437819-0.370934-0.482307
" print ( '
------Different columns are populated with different values------One, threea-0.211055-2.869212 0.022179b 1.000000 2.000000 3.000000c-0.870090-0.878423 1.071588d 1.000000 2.000000 3.000000 e-0.203259 0.315897 0.495306f 0.490568-0.968058-0.999899g 1.000000 2.000000 3.000000 H 1.437819-0.370934-0.482307
Print ('------forward to fill------')print( Df.fillna (method="ffill"))
‘‘‘
------Forward fill------One, threea-0.211055-2.869212 0.022179b-0.211055-2.869212 0.022179c-0.870090-0.878423 1.071588d-0.870090-0.878423 1.071588e-0.203259 0.315897 0.495306F 0.490568-0.968058-0.999899g 0.490568-0.968058-0.999899H 1.437819-0.370934-0.482307
Print ('------back to fill------')print( Df.fillna (method="bfill"))
‘‘‘
------Back fill------One, threea-0.211055-2.869212 0.022179b-0.870090-0.878423 1.071588c-0.870090-0.878423 1.071588d-0.203259 0.315897 0.495306e-0.203259 0.315897 0.495306f 0.490568-0.968058-0.999899g 1.437819-0.370934-0.482307H 1.437819-0.370934- 0.482307
‘‘‘
Print ('------Average fill------') Print (Df.fillna (Df.mean ()))
‘‘‘
------Average fill------One, threea-0.211055-2.869212 0.022179b 0.128797-0.954146 0.021373c-0.870090-0.878423 1.071588d 0.128797-0.954146 0.021373e-0.203259 0.315897 0.495306f 0.490568-0.968058-0.999899g 0.128797-0.954146 0.021373H 1.437819- 0.370934-0.482307
‘‘‘
Python data Analysis (ii) Pandas missing value processing