Python implements two-fork tree __python

Source: Internet
Author: User

Binary tree is a data structure of a very important data structure, in the use of Python to build a decision tree model, found that the need to implement the fork tree, so back to look at the two-fork tree, with the following results.

I built this node-type data first, and he has several properties and functions:

(1) attribute: Name, data, left child node, right child node, parent node, child node number (degree);

(2) Method: Add child nodes and delete child nodes, and the number of child nodes changes, the child node's parent node becomes the node.

I need to make my two-fork tree have this feature:

(1) attribute: depth, root node, all pluggable node dictionaries {name: data}, all node dictionary {name: data}

(2) Methods:

Using an existing node or a node with multiple nodes to generate the tree structure, calculate the depth of the tree at any time, make a subtree by using one of the nodes of the tree, or insert or delete a subtree on one of the inserted nodes of the tree; print the tree structure
The following code

#-*-coding:utf-8-*-' created by ZWG in 2016-10-7 ' Import copy Class Node:def __init__ (Self,name,data): Self.data=data Self.name=name Self. Rchild=none self. Lchild=none self.child_number=0 self.parent=none def add_rchild (self,node): if self. Rchild is not none:self. Rchild=node else:self. Rchild=node self.child_number+=1 node.set_parent (self) def drop_rchild (self): self. Rchild=none self.child_number-=1 def set_parent (Self,node): Self.parent=node def add_lchild (self,n ODE): If self. Lchild is not none:self. Lchild=node else:self. Lchild=node self.child_number+=1 node.set_parent (self) def drop_lchild (self): self. Lchild=none Self.child_number-=1 class Tree:def __init__ (Self,node): "Initialize to use a child-free The root of a node as a tree can also use one that itself contains a multilayered tree structurenode to build the tree each node contains two primary attributes of name and data, and two nodes All_node for the node Enable_node as pluggable "self.parent=no De self.depth=1 self.all_node={node.name:node} self.enable_node={node.name:node} C1=NODE.R Child C2=node. Lchild C=[C1,C2] B=[i for i in C if I am not None] If Len (B) ==2:del self.enable_node[
                Node.name] While Len (b)!=0:self.depth+=1 c=copy.copy (b) for i in B: C.remove (i) self.all_node[i.name]=i if i.child_number!=2:self. Enable_node[i.name]=i if I.rchild is not none:c.append (i.rchild) If I . 
        Lchild is not none:c.append (i.lchild) b=copy.copy (C) def get_depth (self): ' Compute the depth of the tree ' depth=1 node=self.parent c1=node. Rchild C2=node.
        LchildC=[C1,C2] B=[i for i in C if I was not None] while Len (B)!=0:depth+=1 c=copy.copy ( B) for I-b:c.remove (i) if I.rchild is not None:c.appe
        nd (i.rchild) If I.lchild is not none:c.append (i.lchild) b=copy.copy (C)
        Return Depth def show (self): ' Print tree structure ' a=[copy.deepcopy (self.parent)]
            N=copy.deepcopy (self.depth) m=copy.copy (n) print self.parent.name.center (2**n*m) while n>=1: B=[] N-=1 for i in A:If I am not None:c1=i.lchil D B.append (C1) If C1 is not none:print C1.name.center (2**
                    n*m), Else:print '. Center (2**n*m), C2=i.rchild
B.append (C2)                    If C2 is not none:print c2.name.center (2**n*m), Else:
                    print '. Center (2**n*m), Else:print '. Center (2**N*M), print '. Center (2**n*m), a=copy.deepcopy (b) print ' \ n ' #del a,n,b def gener Ate_childtree (self,child_name): "Select Child_name this node to generate a subtree, the root node of the subtree is Child_node" "ch Ild_node=self.all_node[child_name] Child_tree=tree (Child_node) return child_tree def add_child_tree (SE Lf,parent_name,child_tree,rl= ' right '): ' Add the subtree tree can be a single node tree, or it can be a multi-layer node tree ' l1=child_ Tree.all_node L2=child_tree.enable_node l4=child_tree.parent Parent_node=self.all_node[parent_name ] If rl== ' right ': Parent_node.add_rchild (L4) If rl== ' left ': parent_node.add_lchild (L4) for I in L1. Keys (): Self.all_node[i]=l1[i] for I in L2.keys (): Self.enable_node[i]=l2[i] If P Arent_node.child_number==2:self.enable_node.pop (Parent_node) self.depth=self.get_depth () def drop _child_tree (self,child_name): "Delete the subtree, child_name the node and all subsequent child nodes of the deleted section to delete the ' ch ' Ild_node=self.all_node[child_name] Child_tree=tree (child_node) L1=child_tree.all_node L2=child_tre E.enable_node parent_node=child_node.parent if Parent_node. Rchild==child_node:parent_node.drop_rchild () Else:parent_node.drop_Lchild () for I in L1.keys (): Self.all_node.pop (L1[i].name) for I in L2:self.enable_node.pop (l1[i].name
        If not Self.enable_node.has_key (parent_node.name): Self.enable_node[parent_node.name]=parent_node Self.depth=self.get_depth () If __name__== ' __main__ ': A=node (' A ', 1) a1=node (' A1 ', 2) a2=node (' A2 ', 2) a11=node (' A11 ', 3) a12=node (' A12 ', 3)
    A21=node (' A21 ', 3) a111=node (' a111 ', 4) a112=node (' a112 ', 4) a211=node (' a211 ', 4) a212=node (' a212 ', 4)
    A11.add_lchild (a111) a11.add_rchild (a112) a21.add_lchild (a211) a21.add_rchild (a212) a.add_lchild (A1) A.add_rchild (A2) A1.add_rchild (A11) a1.add_lchild (A12) a2.add_rchild (A21) "' verifies that node properties and methods are correct PRI NT A.lchild.name print a.rchild.name print a.child_number print a.parent print A1. Rchild.name print A.rchild.rchild.name ' ' #生成node关于a的树, A has 4 layers t=tree (a) Print t.depth print T . All_node.keys () print T.enable_node.keys () #T. Show () #打印树 #生成node关于b的树, A has a two-storey b=node (' B ', 5); B1=node (' B1 ', 6); B2=node (' B2 ', 6) B.add_lchild (B1); B.add_rchild (B2) b_tree=tree (b) #b_tree. Show () #打印树 #生成树T的子树 to A1
  As a node, the depth of the A1 is 3 t1=t.generate_childtree (' A1 ')  Print t1.depth print T1.all_node.keys () print T1.enable_node.keys () #t1. Show () #打印树 #增加子树, in a111 Followed by a subtree b_tree, at which point the height of the tree is 6 t.add_child_tree (' a111 ', B_tree, ' left ') print t.depth print T.enable_node.keys () prin T T.all_node.keys () #T. Show () #打印树 #删除以节点b开始的子树, revert to the original look T.drop_child_tree (' B ') print t.depth Prin T T.enable_node.keys () print T.all_node.keys () #T. Show () #打印树

Results: 4
[' A ', ' A21 ', ' a112 ', ' A11 ', ' A12 ', ' a211 ', ' a212 ', ' A1 ', ' A2 ', ' a111 ']
[' a111 ', ' a112 ', ' A12 ', ' a212 ', ' a211 ', ' A2 ']
3
[' A1 ', ' a111 ', ' a112 ', ' A11 ', ' A12 ']
[' a111 ', ' a112 ', ' A12 ']
6
[' a111 ', ' a112 ', ' A12 ', ' a212 ', ' a211 ', ' B1 ', ' B2 ', ' A2 ']
[' A ', ' A21 ', ' a112 ', ' A11 ', ' A12 ', ' a211 ', ' a212 ', ' A1 ', ' A2 ', ' B1 ', ' B2 ', ' B ', ' a111 ']
4
[' a111 ', ' a112 ', ' A12 ', ' a212 ', ' a211 ', ' A2 ']
[' A ', ' A21 ', ' a112 ', ' A11 ', ' A12 ', ' a211 ', ' a212 ', ' A1 ', ' A2 ', ' a111 ']




Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.