Study notes, used as database queries, original reference
1 #!/usr/bin/env python2 #Coding:utf-83 #Author:--<qingfengkuyu>4 #Use of Purpose:mongodb5 #CREATED:2014/4/146 #32-bit versions can store up to 2.5GB of data (nosqlfan: Maximum file size 2G, production environment 64-bit recommended)7 8 ImportPymongo9 ImportdatetimeTen ImportRandom One A #Create a connection -conn = Pymongo. Connection ('10.11.1.70', 27017)#now use Pymongo. Mongoclient Connection - #connecting to a database thedb =Conn.study - #db = conn[' study ') - - #Print all clustered names, connect to aggregation + PrintU'All aggregates:', Db.collection_names () -Posts =Db.post + #posts = db[' post '] A Printposts at - #Inserting Records -New_post = {"AccountID": 22,"UserName":"libing",'Date':d Atetime.datetime.now ()} -New_posts = [{"AccountID": 22,"UserName":"Liuw",'Date':d Atetime.datetime.now ()}, -{"AccountID": 23,"UserName":"urling",'Date':d Atetime.datetime.now ()}]#each record has a different insertion time - in Posts.insert (new_post) - #Posts.insert (new_posts) #批量插入多条数据 to + #Deleting Records - PrintU'Delete the specified record: \ n', Posts.find_one ({"AccountID": 22,"UserName":"libing"}) thePosts.remove ({"AccountID": 22,"UserName":"libing"}) * $ #modify records within a clusterPanax NotoginsengPosts.update ({"UserName":"urling"},{"$set":{'AccountID': Random.randint (20,50)}}) - the #query record, statistics record quantity + PrintU'The total record is:', Posts.count (), Posts.find (). Count () A PrintU'query a single record: \ n', Posts.find_one () the PrintPosts.find_one ({"UserName":"Liuw"}) + - #querying all Records $ PrintU'querying multiple records:' $ #For item in Posts.find (): #查询全部记录 - #For item in Posts.find ({"UserName": "Urling"}): #查询指定记录 - #for item in Posts.find (). Sort ("UserName"): #查询结果根据UserName排序, ascending by default the #for item in Posts.find (). Sort ("UserName", Pymongo. Ascending): #查询结果根据UserName排序, Ascending is ascending, descending is descending - forIteminchPosts.find (). sort ([("UserName", Pymongo. Ascending), ('Date', Pymongo. Descending)]):#query results sorted by multiple columnsWuyi PrintItem the - #to view the performance of a query statement Wu #Posts.create_index (["UserName", Pymongo. Ascending), ("Date", Pymongo. Descending)]) #加索引 - PrintPosts.find (). sort ([("UserName", Pymongo. Ascending), ('Date', Pymongo. Descending)]. Explain () ["cursor"]#querying records with Basiccursor without index About PrintPosts.find (). sort ([("UserName", Pymongo. Ascending), ('Date', Pymongo. Descending)]. Explain () ["nscanned"]#the number of records queried when the query statement was executed
Python operation MongoDB (use of Pymongo module)