The practice of seeking greatest common divisor, least common multiple and decomposition factorization of exotic flowers (C language)
1 /*2 The most wonderful seeking greatest common divisor and least common multiple3 Create by Laog4 Time July 27, 2017 12:23:145 */6 7 //two numbers of greatest common divisor8 //Two numbers of least common multiple9 //decomposes a positive integer factorization--and 2.3.5Ten One#include <stdio.h> A - intmain1 () - { the //3,4 - // - - intv; -scanf"%d", v); + intA = -; - intStart =1; + intEnd =A; A intresult =0; at for(i = start; I <= end; i++) - { - //find the largest prime number in a - if(a% i = =0&& I%2!=0) - { -result =i; in } - } to printf (result); + } - //the most wonderful to seek greatest common divisor and least common multiple the intmain2 () * { $ //Greatest Common DivisorPanax Notoginseng //input - intA = -; the intb = -; + //flags that declare loops A intStart =1; the intend = a < b?a:b; + //declares the traversal of the receiving greatest common divisor - intMaxgongyue =0; $ for(inti = start; I < end; i++) $ { - if(a% i = =0&& b% i = =0) - { theMaxgongyue =i; - }Wuyi } the printf (Maxgongyue); - return 0; Wu } - //Beg least common multiple About intmain3 () $ { - //least common multiple - //input - intA = -; A intb = -; + //declaring loop Flags the intStart = A *b; - intend = a > B?a:b; $ //declaring a variable that receives least common multiple the intMingongbei =0; the for(inti = start; I >= end; i--) the { the if(i% A = =0&& I% b = =0) - { inMingongbei =i; the } the } About printf (mingongbei); the return 0; the } the + //determine if a number is prime - intPanduanzhishu (ints) the {Bayi intSign =1; the for(inti =2; I <= process-1; i++) the { - if(s% i = =0) - { theSign =0; the } the } the returnSign ; - } the the intmain4 () the {94 //Decomposition factorization the //input the intA = -; the intStart1 =1;98 intEnd1 =A; About intProcess =A; - while(1)101 {102 for(inti = Start1; I < end; i++)103 {104 if(Panduanzhishu (i)) the {106 if(process% i = =0)107 {108 printf (i);109Process = Process/i; the Break;111 } the }113 } the //when the Process=1 time to jump out of the loop the if(Process = =1) the {117 Break;118 }119 } - }121 /**122 The following approach is more normal123 using Algorithms124 */ the /*126 There are two integers a and B:127 - ①a%b remainder C129 the ② If c=0, then B is a two-digit greatest common divisor131 the ③ If c≠0, then a=b,b=c, then go back to execute ①133 134 For example, the greatest common divisor process for 27 and 15 is:135 136 27÷15 Yu 1215÷12 312÷3 0 So, 3 is the greatest common divisor137 */138 voidMain ()/*seeking greatest common divisor by the method of dividing*/ 139 { $ intm, N, a, B, t, C; 141printf"Input, Integer numbers:\n"); 142scanf"%d%d", &a, &b); 143M=a; n=b; 144 while(b!=0)/*The remainder is not 0 and continues to divide until the remainder is 0*/ 145{c=a%b; a=b; b=C;} 146printf"The largest common divisor:%d\n", a); 147printf"The least common multiple:%d\n", m*n/a); 148 }149
The practice of seeking greatest common divisor, least common multiple and decomposition factorization of exotic flowers (C language)