Pandas Foundation
Import Pandas ASPD
Import NumPy as NP
#数字序列
MYSERIES=PD. Series ([1,3,5,np.nan,6,8])
Print Myseries
#日期序列
Mydate=pd.date_range (' 20150101 ', periods=42)
Print MyDate
Generating sequences
The results are as follows:
0 1
1 3
2 5
3 NaN
4 6
5 8
Dtype:float64
<class ' Pandas.tseries.index.DatetimeIndex ' >
[2015-01-01, ..., 2015-02-11]
Length:42, Freq:d, Timezone:none
To generate a data set
This blog all content is original, if reproduced please indicate source http://blog.csdn.net/myhaspl/
#-*-Coding:utf-8-*-
"""
Created on Mon Mar 09 11:21:02 2015
@author: [Email protected]
"""
Print U "python data analysis \ n"
Import Pandas as PD
Import NumPy as NP
#日期序列
Mydate=pd.date_range (' 20150101 ', periods=10)
Print MyDate
#构造商品销量数据
MYDF =PD. DataFrame (Np.random.randint (0,1000,size= (10,4)), Index=mydate,columns=[u ' Commodity a ', U ' goods b ', U ' commodity c ', U ' commodity d ')
#输出商品销量数据
Print MYDF
The results of the operation are as follows:
Runfile (' c:/users/administrator/desktop/test1.py ', wdir=r ' c:/users/administrator/desktop ')
Python Data analysis
<class ' Pandas.tseries.index.DatetimeIndex ' >
[2015-01-01, ..., 2015-01-10]
Length:10, Freq:d, Timezone:none
Commodity a commodity B commodity C commodity D
2015-01-01 369 836 908 440
2015-01-02 257 26 725 542
2015-01-03 485 694 701 172
2015-01-04 468 762 536 735
2015-01-05 828 996 852 267
2015-01-06 690 824 515 749
2015-01-07 357 740 559 157
2015-01-08 705 573 193 568
2015-01-09 285 853 600 132
2015-01-10 681 437 935 93
The road of Mathematics-python Data Processing (1)