01st sets of simulated exam for Mathematics Competition Training of Gannan Normal University

Source: Internet
Author: User

 

1. Set $ F, G $ to a continuous function on $ [a, B] $.

(1) for $1 <p <q <\ infty $, $ \ cfrac {1} {p} + \ cfrac {1} {q} = 1,, b> 0 $, test certificate: $ \ Bex AB \ Leq \ cfrac {1} {p} a ^ P + \ cfrac {1} {q} B ^ Q. \ EEx $

(2) set $ \ DPS {\ VSM {n} a_n} $ as the positive series of convergence. test evidence: $ \ DPS {\ VSM {n} a_n ^ {1-\ frac {1} {n }}$ also converges.

(3) for $1 \ Leq p \ Leq \ infty $, define $ \ Bex \ Sen {f} _ p = \ sedd {\ BA {ll} \ DPS {\ sex {\ int_a ^ B | f (x) | ^ p \ RD x} ^ \ frac {1} {p}, & 1 \ Leq P <\ infty, \\\ DPS {\ Max _ {A \ Leq x \ Leq B} | f (x) |}, & P = \ infty. \ EA} \ EEx $ test certificate: If $1 \ Leq P, Q \ Leq \ infty $ \ DPS {\ frac {1} {p} + \ frac {1} {q} = 1} $, $ \ Sen {f} _ p <\ infty $, $ \ Sen {g} _ q <\ infty $, then $ \ Bex \ int_a ^ B | f (x) g (x) | \ RD x \ Leq \ Sen {f} _ p \ Sen {g }_{ Q }. \ EEx $

(4) for $1 \ Leq p \ Leq \ infty $, $ \ Sen {f} _ p <\ infty $, $ \ Sen {g} _ p <\ infty $, test certificate: $ \ Bex \ Sen {F + G} _ p \ Leq \ Sen {f} _ p + \ Sen {g} _ p. \ EEx $

(5) then set $ h $ to the value range of $ F $ (which is an interval) for second-order continuous export, and $ h'' \ Leq 0 $, then $ \ Bex H \ sex {\ frac {1} {B-a} \ int_a ^ B f (x) \ RD x} \ geq \ frac {1} {B-a} \ int_a ^ B H (f (x) \ RD X. \ EEx $

(6) set $ F $ to constant instead of zero. For $ p \ In \ BBR $, define $ \ Bex a_p (f) = \ sex {\ frac {1} {B-a} \ int_a ^ B | f (x) | ^ p \ RD x} ^ \ frac {1} {p }. \ EEx $ test certificate: $ \ beex \ Bea \ lim _ {P \ To-\ infty} a_p (f) & =\ min _ {A \ Leq x \ Leq B} | f (x) |, \ lim _ {P \ to 0} a_p (f) & =\ exp \ SEZ {\ frac {1} {B-a} \ int_a ^ B \ ln | f (x) | \ RD x }, \\\ LiM _ {P \ to + \ infty} a_p (f) &=\ Max _ {A \ Leq x \ Leq B} | f (x) |. \ EEA \ eeex $

(7) Test Certificate: $ \ Xi \ In (a, B) $ exists, so that $ \ DPS {\ int_a ^ B f (x) \ rd x = F (\ xi) (B-a)} $.

(8) If you set $ F $ to strictly increase the number of non-negative values, then (7) knows $ \ forall \ P> 0 $, $ \ Bex \ exists | \ x_p \ In (a, B), \ st f ^ P (x_p) = \ frac {1} {B-a} \ int_a ^ B f ^ p (x) \ RD X. \ EEx $ test certificate: $ \ vlm {p} x_p $ exists, and request it.

 

Proof: (1) $ \ beex \ Bea & \ quad AB \ Leq \ frac {1} {p} a ^ P + \ frac {1} {q} B ^ q = \ frac {1} {p} a ^ P + \ sex {1-\ frac {1} {p} B ^ \ frac {p} {P-1} \ & \ LRA \ frac {a} {B ^ \ frac {1} {P-1} \ Leq \ frac {1} {p} \ sex {\ frac {A} {B ^ \ frac {1} {P-1 }}^ p + 1-\ frac {1} {P }\\& \ LRA x \ Leq \ frac {1} {p} x ^ p + 1- \ frac {1} {p} \ & \ LRA X-1 \ Leq \ frac {1} {p} (x ^ P-1) \ & \ La \ frac {X-1} {\ frac {1} {p} (x ^ P-1 )} =\ frac {1} {\ Xi ^ {P-1} \ sedd {\ BA {ll}> 1, & 0 \ Leq x <1, \ x <\ xi <1, \ <1, & 1 <x <\ infty, \ 1 <\ xi <X. \ EA} \ EEA \ eeex $ can also be proved as follows: Set $ \ Bex f (x) =\ frac {1} {p} x ^ p-x + 1-\ frac {1} {p}, \ EEx $ then $ F (1) = 0 $, $ \ Bex f' (x) = x ^ {P-1}-1 \ sedd {\ BA {ll} <0, & 0 <x <1, \> 0, & amp; X & gt; 1. \ EA} \ EEx $ and $ f (x) \ geq F (1) = 0, \ x \ in [0, \ infty) $.

 

(2) by (1) zhi $ \ beex \ Bea \ VSM {n} a_n ^ {1-\ frac {1} {n }}& = 2 \ VSM {n} a_n ^ {1 -\ frac {1} {n }}\ cdot \ frac {1} {2} \ & \ Leq 2 \ VSM {n} \ sex {\ frac {n-1} {n} a_n + \ frac {1} {n} \ frac {1} {2 ^ n }}\& <\ infty. \ EEA \ eeex $

 

(3) set $ \ Sen {f} _ p \ NEQ 0 $, $ \ Sen {g} _ Q \ NEQ 0 $, $ p \ NEQ 1 $, $ Q \ NEQ \ infty $, and $ \ beex \ Bea \ int_a ^ B \ sev {\ frac {f (x )} {\ Sen {f }_p} \ cdot \ frac {g (x )} {\ Sen {g }_q }}\ RD x \ Leq \ int_a ^ B \ SEZ {\ frac {1} {p} \ sex {\ frac {f (x)} {\ Sen {f }_p }}^ P + \ frac {1} {q} \ sex {\ frac {g (x )} {\ Sen {g }_q }}^ Q} \ RD x = \ frac {1} {p} + \ frac {1} {q} = 1. \ EEA \ eeex $

(4) set $ p \ NEQ 1 $, $ p \ NEQ \ infty $, $ \ beex \ Bea \ Sen {F + G} _ P ^ P & = \ int_a ^ B | f (x) + g (x) | ^ p \ RD x \ & \ Leq \ int_a ^ B | f (x) + g (x) | \ cdot | f (x) + g (x) | ^ P-1} \ RD x \ & \ Leq \ int_a ^ B (| f (x) | + | G (x) |) \ cdot | f (x) + g (x) | ^ P-1} \ RD x \ & \ Leq \ int_a ^ B | f (x) | \ cdot | f (x) + g (x) | ^ {pm} \ RD x + \ int_a ^ B | G (x) | \ cdot | f (x) + g (x) | ^ {P-1} \ RD x \ & \ Leq \ sex {\ int_a ^ B | f (x) | ^ p \ RD x} ^ \ frac {1} {p} \ cdot \ sex {\ int_a ^ B | f (x) + g (x) | ^ {P-1) \ cdot \ frac {p} P-1} \ RD x} ^ \ frac {p1} {p} \ & \ quad + \ sex {\ int_a ^ B | G (x) | ^ p \ RD x} ^ \ frac {1} {p} \ cdot \ sex {\ int_a ^ B | f (x) + g (x) | ^ {P-1) \ cdot \ frac {p} P-1 }\ RD x} ^ \ frac {P-1 {P }\\\&=\ Sen {f }_p \ cdot \ Sen {F + G} _ P ^ {P-1} + \ Sen {g} _ p \ cdot \ Sen {F + G} _ P ^ {P-1 }. \ EEA \ eeex $

(5) set $ \ DPS {A = \ frac {1} {B-a} \ int_a ^ B f (x) \ RD x }$, by $ h'' \ Leq 0 $ $ \ beex \ Bea & \ quad H (y) \ Leq H (A) + H' () (Y-a) \ & \ rA H (f (x) \ Leq H (A) + H' (A) (f (x)-) \ & \ Ra \ frac {1} {B-a} \ int_a ^ B H (f (x) \ RD x \ Leq H (). \ EEA \ eeex $

(6) Verify $ \ DPS {\ lim _ {P \ to + \ infty} a_p (f) = \ Max _ {A \ Leq x \ Leq B} | f (x) |}$. obviously, $ \ DPS {\ limsup _ {P \ to + \ infty} a_p (f) \ Leq \ Max _ {A \ Leq x \ Leq B} | f (x) |}$, forward certificate $ \ Bex \ liminf _ {P \ to + \ infty} a_p (f) \ geq \ Max _ {A \ Leq x \ Leq B} | f (x) |, \ EEx $. set $ \ Bex \ Xi \ in [a, B], \ st | f (\ XI) | =\ Max _ {A \ Leq x \ Leq B} | f (x) |. \ EEx $ and the number-preserving feature of continuous functions (Note: $ f (x) \ NEQ 0, \ forall \ x $ ), $ \ Bex \ exists \ [a, B] \ supset [c, d] \ Ni \ Xi, \ st x \ in [C, d] \ rA | f (x) |> | f (x) |-\ ve. \ EEx $ then $ \ beex \ Bea a_p (f) & \ geq \ sex {\ frac {1} {B-a} \ int_c ^ d | f (x) | ^ p \ RD x} ^ \ frac {1} {p} \ & \ geq \ SEZ {\ frac {1} {B-a} \ int_c ^ d (| F (\ XI) |-\ ve) ^ p \ RD x} ^ \ frac {1} {p} \\\\=\ sex {\ frac {d-c} {B-a }}^ \ frac {1} {p} (| f (\ XI) |-\ ve), \\\ liminf _ {P \ to + \ infty} a_p (f) & \ geq | f (\ xi) |-\ ve. \ EEA \ eeex $ further evidence $ \ DPS {\ lim _ {P \ To-\ infty} a_p (f) =\min _ {A \ Leq x \ Leq B} | f (x) |}$: $ \ beex \ Bea \ lim _ {P \ To-\ infty} a_p (f) & =\ LiM _ {P \ To-\ infty} \ sed {\ frac {1} {B-a} \ SEZ {\ frac {1} {| f (x) |}}^ {-p} \ RD x} ^ {\ frac {1} {-p} \ cdot (-1 )} \ & =\ LiM _ {Q \ to + \ infty} \ sed {\ frac {1} {B-a} \ SEZ {\ frac {1} {| f (x) |}}^ Q \ RD x }^{\ frac {1} {q} \ cdot (-1 )} \\& =\ SEZ {\ lim _ {Q \ to + \ infty} a_q \ sex {\ frac {1} {| f (x) |}}^{-1 }\\\&=\ SEZ {\ Max _ {A \ Leq x \ Leq B }\ frac {1 }{| f (x) |}}^ {-1 }\\\& =\ min _ {A \ Leq x \ Leq B} | f (x) |. \ EEA \ eeex $ final proof $ \ DPS {\ lim _ {P \ to 0} a_p (f) =\ exp \ SEZ {\ frac {1} {B-a} \ int_a ^ B \ ln | f (x) | \ RD x }}$. on the one hand, $ \ beex \ Bea \ ln a_p (f) & =\ frac {1} {p} \ ln \ SEZ {\ frac {1} {B-a} \ int_a ^ B | f (x) | ^ p \ RD x }\\\\geq \ frac {1} {p} \ frac {1} {B-a} \ int_a ^ B \ ln | f (x) | ^ p \ RD x \ quad \ sex {(\ ln x) ''<0, \ mbox {By} (5 )} \\<=\ frac {1} {B-a} \ int_a ^ B \ ln | f (x) | \ RD X. \ EEA \ eeex $ on the other hand, $ \ beex \ Bea \ ln a_p (f) & =\ ln \ SEZ {\ frac {1} {B-a} \ int_a ^ B | f (x) | ^ p \ RD x} ^ \ frac {1} {p} \ & \ Leq \ cfrac {\ DPS {\ frac {1} {B-a} \ int_a ^ B | f (x) | ^ p \ RD X-1 }}{ P }\\\& \ quad \ sex {\ ln x \ Leq X-1 \ (x> 0) \ Ra \ ln x ^ p \ Leq x ^ P-1 \ ln x \ Leq \ frac {x ^ pm} {p} \ (P> 0 )} \\& =\ frac {1} {B-a} \ int_a ^ B \ frac {| f (x) | ^ P-1} {p} \ RD X, \\\ liminf _ {P \ to 0} a_p (f) & \ Leq \ frac {1} {B-a} \ int_a ^ B \ lim _ {P \ to 0} \ frac {| f (x) | ^ P-1} {p} \ RD x = \ frac {1} {B-a} \ int_a ^ B \ ln | f (x) | \ RD X. \ EEA \ eeex $

(7) set $ \ DPS {f (x) = \ int_a ^ x F (t) \ RD t} $, which is based on the mean value theorem of the Laplace, $ \ Bex \ exists \ Xi \ In (a, B), \ st F (\ xi) = f' (\ xi) = \ frac {F (B) -F (a)} {B-a }=\ frac {1} {B-a} \ int_a ^ B f (t) \ RD T. \ EEx $

(8) by (1) zhi $ \ beex \ Bea f ^ P (x_p) & =\ cfrac {1} {B-a} \ int_a ^ B f ^ p (t) \ cdot 1 \ RD t \ & \ Leq \ cfrac {1} {B-a} \ sex {\ int_a ^ B f ^ {P \ cdot \ frac {p + 1} {p} (t) \ RD t} ^ \ frac {p} {p + 1} \ sex {\ int_a ^ B 1 ^ {p + 1} \ RD t} ^ {\ frac {1} {p + 1 }}\\\&=\ cfrac {1} {B-a} \ sex {\ int_a ^ B f ^ {p + 1} (t) \ RD t} ^ {\ frac {p} {p + 1} (B-) ^ {\ frac {1} {p + 1 }}\\\&=\ sex {\ cfrac {1} {B-a} \ int_a ^ B f ^ {p + 1} (t) \ RD t} ^ \ frac {p} {p + 1} \\& = f ^ p (x _ {p + 1 }). \ EEA \ eeex $ $ F $ strictly incrementing. We have $ x_p \ Leq X _ {p + 1} $. in this case, the increment of $ x_p $ has an upper bound. from the monotonic bounded theorem, $ \ DPS {\ vlm {p} x_p = X _ \ infty} $ exists. in addition, by (6) $ \ beex \ Bea F (x_p) & =\ SEZ {\ cfrac {1} {B-a} \ int_a ^ B f ^ p (t) \ RD t} ^ {\ frac {1} {p}, \ f (x _ \ infty) & =\ vlm {p} \ SEZ {\ cfrac {1} {B-a} \ int_a ^ B f ^ p (t) \ RD t} ^ {\ frac {1} {P }}=\ Max _ {A \ Leq t \ Leq B} f (t) = F (B ), \ x _ \ infty & = B, \ EEA \ eeex $

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.