02nd sets of simulated exam for Mathematics Competition Training of Gannan Normal University

Source: Internet
Author: User

 

 

1. find $ \ DPS {\ int _ \ VGA y ^ 2 \ RD s} $, $ \ VGA $ consists of $ \ DPS {\ sedd {\ BA {RL} x ^ 2 + y ^ 2 + Z ^ 2 & = a ^ 2 \ x + Z & = A \ EA }}$ decision.

Answer: $ \ VGA $: $ \ Bex \ sedd {\ BA {RL} \ sex {X-\ cfrac {A} {2} ^ 2 + y ^ 2 + \ sex {z-\ cfrac {A} {2 }}^ 2 & =\ cfrac {A ^ 2} {2 }\\\ sex {X-\ cfrac {A} {2 }}+ \ sex {Y-\ cfrac {A} {2 }}& = 0 \ EA }. \ EEx $ transform $ \ Bex u = x-\ cfrac {A} {2}, \ quad v = Y, \ quad W = z-\ cfrac {A} {2 }, \ EEx $ then $ \ beex \ Bea \ int _ \ VGA y ^ 2 \ rd s & =\ int_l V ^ 2 \ RD s \ quad \ sex {L: \ sedd {\ BA {RL} U ^ 2 + V ^ 2 + w ^ 2 & =\ cfrac {A ^ 2} {2} \ U + W = 0 \ EA }}\\<\int_0 ^ {2 \ PI} \ cfrac {A ^ 2} {2} \ sin ^ 2 \ TT \ SQRT {\ sex {\ cfrac {\ rd u }{\ RD \ TT }}^ 2 + \ sex {\ cfrac {\ RD v }{\ rd T }}^ 2 + \ sex {\ cfrac {\ rd W }{\ rd T }}^ 2} \ RD \ TT \ & \ quad \ sex {L: \ sedd {\ BA {RL} u = \ cfrac {A} {2} \ cos \ TT \ v = \ cfrac {A} {\ SQRT {2 }}\ sin \ TT \ W =-\ cfrac {A} {2} \ cos \ TT \ EA }, 0 \ Leq \ TT \ Leq 2 \ PI }\\\&=\ int_0 ^ {2 \ PI} \ cfrac {A ^ 2} {2} \ sin ^ 2 \ TT \ cdot \ cfrac {A }{\ SQRT {2 }}\ RD \ TT \\\&=\ cfrac {A ^ 3 \ PI }{ 2 \ SQRT {2 }}. \ EEA \ eeex $

 

2. set $ A, B, and C $ to positive values, calculate curved points $ \ Bex \ iint_s x ^ 3 \ rd y \ rd z + y ^ 3 \ rd z \ RD x + Z ^ 3 \ RD x \ RD y, \ EEx $ where $ S $ is the upper half elliptical sphere $ \ Bex \ frac {x ^ 2} {A ^ 2} + \ frac {y ^ 2} {B ^ 2} + \ frac {z ^ 2} {C ^ 2} = 1, \ quad Z \ geq 0, \ EEx $ direction up.

Answer: $ \ Bex \ mbox {original second-Type Curved Surface points} & = & 3 \ iiint _ {\ frac {x ^ 2} {A ^ 2} + \ frac {y ^ 2} {B ^ 2} + \ frac {z ^ 2} {C ^ 2} \ Leq 1 \ atop Z \ geq 0} (x ^ 2 + y ^ 2 + Z ^ 2) \ RD x \ rd y \ rd z \ & = & 3abc \ iiint _ {x ^ 2 + y ^ 2 + Z ^ 2 \ Leq 1 \ atop Z \ geq 0} (a ^ 2x ^ 2 + B ^ 2y ^ 2 + C ^ 2Z ^ 2) \ RD x \ rd y \ rd z \ & = & 3abc (a ^ 2 + B ^ 2 + C ^ 2) \ iiint _ {x ^ 2 + y ^ 2 + Z ^ 2 \ Leq 1 \ atop Z \ geq 0} x ^ 2 \ RD x \ rd y \ rd z \\& = & ABC (a ^ 2 + B ^ 2 + C ^ 2) \ iiint _ {x ^ 2 + y ^ 2 + Z ^ 2 \ Leq 1 \ atop Z \ geq 0} (x ^ 2 + y ^ 2 + Z ^ 2) \ RD x \ rd y \ rd z \ & =& \ frac {1} {2} ABC (a ^ 2 + B ^ 2 + C ^ 2) \ iiint _ {x ^ 2 + y ^ 2 + Z ^ 2 \ Leq 1} (x ^ 2 + y ^ 2 + Z ^ 2) \ RD x \ rd y \ rd z \ & =& \ frac {1} {2} ABC (a ^ 2 + B ^ 2 + C ^ 2) \ int_0 ^ 1 R ^ 2 \ cdot 4 \ Pi R ^ 2 \ RD r \ & = & \ frac {2 \ PI} {5} ABC (a ^ 2 + B ^ 2 + C ^ 2 ). \ EEx $

 

3. calculate surface points $ \ DPS {\ iint_s \ frac {\ RD s} {\ SQRT {x ^ 2 + y ^ 2 + (Z + 2) ^ 2 }}$, $ S $ is the top part cut by $ Z =\sqrt {x ^ 2 + y ^ 2} $ on the Sphere centered at the origin and with the radius of $2 $.

Answer: $ \ beex \ Bea \ iint_s \ frac {\ RD s} {\ SQRT {x ^ 2 + y ^ 2 + (Z + 2) ^ 2 }}& =\ iint_s \ frac {\ RD s }{\ SQRT {8 + 2Z }}\\\& =\ iint _ {x ^ 2 + y ^ 2 \ leq 2} \ frac {1} {\ SQRT {8 + 2 \ SQRT {4-x ^ 2-y ^ 2 }}\ cdot \ frac {2} {\ SQRT {4-x ^ 2-y ^ 2 }}\ RD x \ RD y \\\&=\ int_0 ^{\ SQRT {2 }}\ frac {\ SQRT {2 }}{\ SQRT {4 + \ SQRT {4-r ^ 2 }}\ cdot 2 \ pi r \ rd r \\\&=\ SQRT {2 }\ pi \ int_0 ^ 2 \ frac {\ rd s }{ \ SQRT {4 + \ SQRT {4-s }}\ cdot \ SQRT {4-s }}\ quad \ sex {S = R ^ 2 }\\\&=\ SQRT {2 }\ pi \ int _ {\ SQRT {2 }}^ 2 \ frac {1 }{\ SQRT {4 + t} \ cdot 2t \ RD t \ quad \ sex {\ SQRT {4-s} = T }\\\& = 2 \ SQRT {2} \ pi \ int _ {\ SQRT {2 }}^ 2 \ frac {1 }{\ SQRT {4 + T }}\ rd T = 4 \ SQRT {2} \ pi \ sex {\ SQRT {6}-\ SQRT {4 + \ SQRT {2 }}}. \ EEA \ eeex $

 

4. set $ \ DPS {f (x) = \ sum _ {n = 0} ^ \ infty \ frac {1} {x + 2 ^ n }}$, $ x \ in [0, \ infty) $. proof:

(1) $ F $ on $ [0, \ infty) $;

(2) $ \ DPS {\ lim _ {x \ To \ infty} f (x) = 0 }$; (3) for everything $ x \ In (0, \ infty) $ \ Bex 0 <F (x)-\ frac {\ ln (1 + x )} {x \ ln 2} <\ frac {1} {1 + x }. \ EEx $

Proof:

(1) by $ \ Bex \ frac {1} {x + 2 ^ n} <\ frac {1} {2 ^ n} \ EEx $ Zhi $ \ DPS {\ sum _ {n = 0} ^ \ infty \ frac {1} {x + 2 ^ n }}$ about $ x $ consistent convergence. while $ f (x) $ is continuous as the sum function.

(2) by $ \ beex \ Bea f (x) & =\ sum _ {n = 0} ^ \ infty \ frac {1} {x + 2 ^ n }\\& =\ sum _ {n = 0} ^ n \ frac {1} {x + 2 ^ n} + \ sum _ {n = n + 1} ^ \ infty \ frac {1} {x + 2 ^ n }\\& <\ frac {n + 1} {x} + \ frac {1} {2 ^ n} \ & \ equiv I _1 + I _2 \ EEA \ eeex $ any fixed $ \ ve> 0 $, you can get $ N $ \ DPS {I _2 <\ frac {\ ve} {2 }}$ first, and then get $ N $, $ \ Bex \ exists \ x> 0, \ st x> X \ rA I _1 <\ frac {\ ve} {2 }. \ EEx $ (3) by $ \ Bex \ frac {1} {x + 2 ^ {n + 1 }}< \ frac {1} {x + 2 ^ t} <\ frac {1} {x + 2 ^ n} \ Quad (n <t <n + 1) \ EEx $ Zhi $ \ Bex \ sum _ {n = 1} ^ \ infty \ frac {1} {x + 2 ^ n} <\ int_0 ^ \ infty \ frac {1} {x + 2 ^ t} \ rd t <\ sum _ {n = 0} ^ \ infty \ frac {1} {x + 2 ^ n }. \ EEx $ and $ \ Bex \ int_0 ^ \ infty \ frac {1} {x + 2 ^ t} \ rd t <F (x) = \ sum _ {n = 0} ^ \ infty \ frac {1} {x + 2 ^ n} <\ int_0 ^ \ infty \ frac {1} {x + 2 ^ t} \ rd t + \ frac {1} {1 + x }. \ EEx $ $ \ beex \ Bea \ int_0 ^ \ infty \ frac {1} {x + 2 ^ t} \ rd t & =\ frac {1 }{\ ln 2} \ int _ {x + 1} ^ \ infty \ frac {1} {y} \ cdot \ frac {\ RD y} {Y-x} \ quad \ sex {x + 2 ^ 6 = y }\\&=\ frac {1} {x \ ln 2} \ cdot \ left. \ ln \ frac {Y-x} {y} \ right | _ {Y = x + 1} ^ {Y = \ infty} \\\\&=\ frac {\ Ln (1 + x )} {x \ ln 2}, \ EEA \ eeex $ we finally get $ \ Bex 0 <F (x)-\ frac {\ ln (1 + x )} {x \ ln 2} <\ frac {1} {1 + x }. \ EEx $

 

5. set $ F $ to a bounded continuous function on $ (0, \ infty) $, and set $ \ sed {R_N} $ to any given positive sequence. test Certificate: The Positive Sequence $ \ sed {x_n} $ exists, making $ \ Bex \ lim _ {n \ To \ infty} [F (x_n + R_N) -F (x_n)] = 0. \ EEx $

Proof: (1) first prove: For any fixed $ n \ In \ BBN $, $ \ bee \ label {113.8: EQ1} \ exists \ Y_n> 0, \ st F (Y_n + R_N)-f (Y_n) <\ frac {1} {n}; \ EEE $ \ bee \ label {113.8: eq2} \ exists \ Z_N> 0, \ st F (Z_N + R_N)-f (Z_N)>-\ frac {1} {n }. the proof of \ EEE $ asserted \ eqref {113.8: EQ1} is similar to that of \ eqref {113.8: eq2. we only use the reverse verification method to prove \ eqref {113.8: EQ1 }. if $ \ Bex y> 0 \ rA f (y + R_N)-f (y)> \ frac {1} {n }, \ EEx $ then $ \ beex \ Bea F (1 + kr_n) & =\ sum _ {J = 0} ^ {k-1} [F (1 + (J + 1) R_N)-f (1 + jr_n)] + F (1) \ &> \ frac {k} {n} + F (1 ). \ EEA \ eeex $ order $ k \ To \ infty $, we found that $ F $ has no upper bound. this is a conflict.

(2) further proof: $ \ Bex \ exists \ x_n> 0, \ ST \ sev {f (x_n + R_N)-f (x_n )} <\ frac {1} {n }. \ EEx $

(A) If $ \ DPS {f (Y_n + R_N)-f (Y_n)>-\ frac {1} {n }}$, you can use $ x_n = Y_n $;

(B) If $ \ DPS {f (Z_N + R_N)-f (Z_N) <\ frac {1} {n }}$, you can use $ x_n = Z_N $;

(C) If $ \ Bex F (Y_n + R_N)-f (Y_n) \ Leq-\ frac {1} {n}, \ quad F (Z_N + R_N) -F (Z_N) \ geq \ frac {1} {n}, \ EEx $ by $ \ Bex \ SEZ {-\ frac {1} {n }, \ frac {1} {n }}\ subset [F (Y_n + R_N)-f (Y_n), F (Z_N + R_N)-f (Z_N)] \ EEx $ and the parameter theorem of continuous functions $ \ Bex \ exists \ x_n \ mbox {between} Y_n, Z_N \ mbox }, \ st F (x_n + R_N)-f (x_n) = 0 \,! \ EEx $

 

6. set $ F: (0, + \ infty) \ To (0, + \ infty) $ is a monotonically increasing function. if $ \ Bex \ lim _ {x \ to + \ infty} \ frac {f (2x)} {f (x)} = 1, \ EEx $ proof: for any $ m> 0 $, $ \ Bex \ lim _ {x \ to + \ infty} \ frac {f (MX)} {f (x )} = 1. \ EEx $

Proof: (1) the question must be verified only for $ m \ geq 1 $. in fact, for $0 <m <1 $ \ Bex \ lim _ {x \ to + \ infty} \ cfrac {f (MX)} {f (x )} = \ lim _ {x \ to + \ infty} \ cfrac {1} {\ cfrac {f (x)} {f (MX )}} =\ cfrac {1} {\ DPS {\ lim _ {x \ to + \ infty} \ cfrac {f \ sex {\ frac {1} {m} s }}{ F (s )}}}. \ EEx $

(2) The question must be verified only for $ x = 2 ^ k \ (k \ In \ BBN) $. in fact, for $ m \ geq 1 $, $ \ Bex \ exists \ K \ In \ BBN, \ ST 2 ^ k \ Leq m <2 ^ {k + 1 }. \ EEx $ and $ \ Bex \ cfrac {F (2 ^ kx)} {f (x)} \ Leq \ cfrac {f (MX )} {f (x)} \ Leq \ cfrac {F (2 ^ {k + 1} x)} {f (x )}. \ EEx $ (3) when $ x = 2 ^ K $, $ \ Bex \ lim _ {x \ to + \ infty} \ cfrac {F (2 ^ kx)} {f (x )} = \ lim _ {x \ to + \ infty} \ prod _ {I = 1} ^ k \ cfrac {F (2 ^ IX )} {F (2 ^ {I-1} x )} = \ prod _ {I = 1} ^ k \ lim _ {s \ to + \ infty} \ cfrac {F (2 S)} {f (s)} = 1. \ EEx $

 

7. For $ \ DPS {x \ In \ sex {0, \ cfrac {\ PI} {2 }}$, test certificate:

(1) $ \ DPS {\ cfrac {1} {3} \ Tan x + \ cfrac {2} {3} \ SiN x> X} $;

(2) $ \ DPS {\ cfrac {1} {\ sin ^ 2 x}-\ cfrac {1} {x ^ 2} \ Leq 1-\ cfrac {4} {\ PI ^ 2 }}$.

Proof: (1) When $ \ DPS {x \ In \ sex {0, \ frac {\ PI} {2 }}$, by $ \ beex \ Bea \ Tan x & =\ int_0 ^ x \ sec ^ 2t \ RD t \ & =\ int_0 ^ X (1 + \ tan ^ 2 T) \ RD t \\\&> \ int_0 ^ x (1 + t ^ 2) \ RD t \ quad \ sex {\ mbox {drawing on the unit circle }\\& = x + \ frac {x ^ 3} {3 }; \ EEA \ eeex $ \ beex \ Bea \ SiN x & =\ int_0 ^ x \ cos t \ RD t \ & =\ int_0 ^ x \ SEZ {1- \ int_0 ^ t \ sin s \ RD s} \ RD t \ &> \ int_0 ^ x \ SEZ {1-\ int_0 ^ t s \ RD s} \ RD t \ \ & = x-\ frac {x ^ 3} {6} \ EEA \ eeex $ \ Bex \ frac {1} {3} \ Tan x + \ frac {2} {3} \ SiN x> X. \ EEx $

(2) $ \ beex \ Bea \ cfrac {1} {x ^ 2}-\ cfrac {4} {\ PI ^ 2 }{\ cfrac {1 }{\ sin ^ 2x}-1} & =\ cfrac {-\ cfrac {2} {y ^ 3 }}{-2 \ cfrac {\ cos y }{\ sin ^ 2y}} \ quad \ sex {x <Y <\ cfrac {\ PI} {2 }}\\\&=\ cfrac {2 \ sin Z \ Cos Z \ Tan Z + \ sin ^ 2Z \ sec ^ 2Z} {3z ^ 2} \ quad \ sex {0 <z <y }\\&=\ cfrac {2 \ sin ^ 2z + \ tan ^ 2 z} {3z ^ 2 }\\\&=\ cfrac {\ SEZ {\ sex {\ SQRT {2 }}^ 2 + 1 ^ 2 }\ SEZ {\ sex {\ SQRT {2} \ sin z} ^ 2 + \ sex {\ Tan Z} ^ 2} {9z ^ 2} \ & \ geq \ cfrac {(\ SQRT {2} \ cdot \ SQRT {2} Z + 1 \ cdot \ Tan Z) ^ 2} {9z ^ 2 }\\\&=\ sex {\ cfrac {2 \ sin Z + \ Tan Z} {3z }}^ 2 \\&> 1. \ EEA \ eeex $

 

8. Set $ F $ to $ [0, \ infty) $ to the monotonic function:

(1) for any $ a> 0 $, $ \ Bex \ lim _ {n \ To \ infty} \ int_0 ^ A f (x) \ sin NX \ RD x = 0; \ EEx $

(2) If you set $ \ DPS {\ vlm {x} f (x) = 0 }$, verify that: $ \ Bex \ vlm {n} \ int_0 ^ \ infty f (x) \ sin NX \ RD x = 0. \ EEx $

Proof: (1) by the second point of the integral value theorem, $ \ beex \ Bea \ sev {\ int_0 ^ A f (x) \ sin NX \ RD x} & =\ sev {f (0) \ int_0 ^ \ Xi \ sin NX \ RD x + f () \ int _ \ Xi ^ A \ sin NX \ RD x }\\&=\ sev {f (0) \ cfrac {1-\ cos n \ Xi} {n} + f () \ cfrac {\ cos n \ Xi-\ cos Na} {n }}\\ & \ Leq \ cfrac {2 \ SEZ {| f (0) | + | f (a) |}}{ n }\\\\ to 0 \ quad \ sex {n \ To \ infty }. \ EEA \ eeex $

(2) Write $ \ beex \ Bea \ int_0 ^ \ infty f (x) \ sin NX \ rd x & =\ frac {1} {n} \ int_0 ^ \ infty f \ sex {\ frac {t} {n} \ sin t \ RD t \ & =\ frac {1} {n} \ sum _ {k = 0} ^ \ infty \ SEZ {\ int _ {2 k \ PI} ^ {(2 k + 1) \ PI} f \ sex {\ frac {t} {n} \ sin t \ rd t + \ int _ {(2 k + 1) \ PI} ^ {(2 k + 2) \ PI} f \ sex {\ frac {t} {n} \ sin t \ RD t }. \ EEA \ eeex $ we have $ \ beex \ Bea & \ quad \ int_0 ^ \ infty f (x) \ sin NX \ RD x \ & \ geq \ frac {1} {n} \ sum _ {k = 0} ^ \ infty \ SEZ {f \ sex {\ frac {(2 k + 1) \ PI} {n }}\ int _ {2 k \ PI} ^ {(2 k + 1) \ PI} \ sin t \ rd t + f \ sex {\ frac {(2 k + 1) \ PI} {n }}\ int _ {(2 k + 1) \ PI} ^ {(2 k + 2) \ PI} \ sin t \ RD t} \ & = 0; \ EEA \ eeex $ \ beex \ Bea & \ quad \ int_0 ^ \ infty f (x) \ sin NX \ RD x \\\\=\ frac {1} {n} \ lim _ {M \ To \ infty} \ sum _ {k = 0} ^ m \ Sez {\ int _ {2 k \ PI} ^ {(2 k + 1) \ PI} f \ sex {\ frac {t} {n} \ sin t \ rd t + \ int _ {(2 k + 1) \ PI} ^ {(2 k + 2) \ PI} f \ sex {\ frac {t} {n} \ sin t \ RD t} \ & \ Leq \ frac {1} {n} \ lim _{ m \ To \ infty} \ sum _ {k = 0} ^ m \ SEZ {f \ sex {\ frac {2 k \ PI} {n }}\ int _ {2 k \ pi} ^ {(2 k + 1) \ PI} \ sin t \ rd t + f \ sex {\ frac {(2 k + 2) \ PI} {n }}\ int _ {(2 k + 1) \ PI} ^ {(2 k + 2) \ PI} \ sin t \ RD t} \ & =\ frac {2} {n} \ lim _ {M \ To \ infty} \ sum _ {k = 0} ^ m \ SEZ {f \ sex {\ frac {2 k \ PI} {n}-f \ sex {\ frac {2 (k + 1) \ PI} {n }}\\\&=\ frac {2} {n} \ lim _ {M \ To \ infty} \ SEZ {f (0) -F \ sex {\ frac {2 (m + 1) \ PI} {n }}\\\&=\ frac {2} {n} f (0) \ EEA \ eeex $ \ Bex 0 \ Leq \ int_0 ^ \ infty f (x) \ SiN x \ RD x \ Leq \ frac {2} {n} f (0 ). \ EEx $ there is a conclusion.

 

9. set $ F $ to continuous on $ [0, C] $, $ F (0) = 0 $, and when $ x \ In (0, c) $, $ f'' (x) <0 $. test Certificate: When $0 <A <B <a + B <C $, $ \ Bex f (a + B) <F (a) + F (B ). \ EEx $

Proof: For fixed $ B> 0 $, make $ \ Bex f (x) = f (x + B)-f (x)-f (B ), \ EEx $ then $ F (0) = 0 $; and by $ f'' (x) <0 $ $ \ Bex f' (X) = f' (x + B)-f' (x) <0. \ EEx $ then $ \ Bex F (a) <F (0) = 0. \ EEx $

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.