Topic Link: Click to open the link
First, the query is processed into Manhattan's smallest spanning tree.
Then you can run violently on the tree.
Can use MO team situation should be for inquiry [L,r], [l ', R '] cost must be ABS (L-L ') + ABS (R-R ')
#include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include < stdlib.h> #include <string.h> #include <limits.h> #include <vector> #include <string># Include <time.h> #include <math.h> #include <iomanip> #include <queue> #include <stack># Include <set> #include <map>const int inf = 1e9;const double eps = 1e-8;const double pi = ACOs ( -1.0); Template & Lt;class t>inline BOOL Rd (T &ret) {char c; int sgn;if (c = GetChar (), c = = EOF) return 0;while (c! = '-' && (c< ' 0 ' | | c> ' 9 ')) c = GetChar (); sgn = (c = = '-')? -1:1;ret = (c = = '-')? 0: (C-' 0 '); while (c = GetChar (), C >= ' 0 ' &&c <= ' 9 ') ret = ret * + (C-' 0 '); ret *= Sgn;return 1;} Template <class t>inline void pt (T x) {if (x <0) {Putchar ('-'); x = x;} if (x>9) pt (X/10);p Utchar (x% 10 + ' 0 ');} using namespace Std;const int N = 1e5 + 10;typedef long long ll;ll gcd (ll x, ll y) {if (X &Gt Y) Swap (x, y), while (x) y%= x, swap (x, y), return y; Vector<int>g[n];class mst{struct Edge{int from, to, dis; Edge (int _from = 0, int _to = 0, int _dis = 0): from (_from), to (_to), dis (_dis) {}bool operator < (const Edge &X) CO Nst{return dis < X.dis;}} Edge[n << 3];int F[n], tot;int find (int x) {return x = = F[x]? x:f[x] = Find (F[x]);} BOOL Union (int x, int y) {x = find (x); y = find (y); if (x = = y) return false;if (x > Y) Swap (x, y); F[x] = Y;return true;} Public:void init (int n) {for (int i = 0; I <= N; i++) F[i] = I;tot = 0;} void Add (int u, int v, int dis) {edge[tot++] = Edge (U, v, dis);} ll work () {//Calculate minimum spanning tree, return cost sort (edge, Edge + tot); ll costs = 0;for (int i = 0; i < tot; i++) if (Union (Edge[i].from, Edge[i] . To)) {cost + = Edge[i].dis; G[edge[i].from].push_back (edge[i].to); G[edge[i].to].push_back (Edge[i].from);} return cost;}} Mst;struct point{//Two-dimensional planar dots int x, y, Id;bool operator < (const point&a) Const{return x = = a.x? y < a.y:x < a . x;}} P[n];bool cmp_id (cOnst point&a, const point&b) {return a.id < b.id;} Class bit{//tree array int c[n], id[n], maxn;int lowbit (int x) {return x&-x;} Public:void init (int n) {MAXN = n + 10;fill (c, C + MAXN + 1, INF), Fill (ID, id + MAXN + 1,-1);} void Updata (int x, int val, int _id) {while (x) {if (Val < c[x]) {c[x] = val; id[x] = _id;} X-= Lowbit (x);}} int query (int x) {int val = inf, _id = -1;while (x <= maxn) {if (val > C[x]) {val = c[x]; _id = id[x];} x + = Lowbit (x);} return _id;}} tree;inline BOOL CMP (int *x, int *y) {return *x < *y;} Class Manhattan_mst{int A[n], B[n];p ublic:ll work (int L, int. r) {Mst.init (R); for (int dir = 1; dir <= 4; dir++) {if (dir% 2==0) for (int i = l; I <= R; i++) swap (p[i].x, p[i].y) and else if (dir = = 3) for (int i = l; I <= R; i++) P[i].y =-p[i].y ; sort (P + L, p + R + 1); for (int i = l; I <= R; i++) A[i] = b[i] = p[i].y-p[i].x; Discretization Sort (b + 1, B + n + 1), int sz = unique (b + 1, B + n + 1)-b-1;//initializes the inverse Tree array tree.init (SZ); for (int i = r; I >= l; i --) {int pos = Lower_bound (b + 1, B + sz + 1, a[i])-B;int id = tree.query (POS); if (id! =-1) mst.add (p[i].id, P[id].id, ABS (p[i].x-p[ id].x) + ABS (P[I].Y-P[ID].Y)) Tree.updata (POS, p[i].x + p[i].y, i);}} for (int i = l; I <= R; i++) P[i].y =-p[i].y;return mst.work ();}} M_mst;ll Up[n], Now;int l[n], r[n];int N, Query, Col[n], siz[n];void Add (int x, int y) {for (int i = x; i <= y; i++) {Now + = siz[col[i]];siz[col[i]]++;}} void del (int x, int y) {for (int i = x; i <= y; i++) {now-= Siz[col[i]]-1;siz[col[i]]--;}} void Dfs (int u, int fa) {if (FA = =-1) Add (L[u], r[u]), Else{if (L[u] < L[FA]) Add (L[u], L[fa]-1); if (R[u] > R[FA]) A DD (R[FA] + 1, r[u]), if (L[u] > L[fa]) del (L[FA], L[u]-1), if (R[u] < R[FA]) del (R[u] + 1, R[FA]);} Up[u] = now;for (int i = 0; i < g[u].size (); i++) if (g[u][i]! = FA) Dfs (g[u][i), u); if (FA! =-1) {if (L[u] < L[FA]) d El (L[u], L[fa]-1), if (R[u] > R[fa]) del (R[FA] + 1, r[u]), if (L[u] > L[fa]) Add (L[FA], L[u]-1); if (R[u] < R[FA ]) Add (R[u] + 1, r[fA]);}} int main () {while (CIN >> n >> query) {for (int i = 1; I <= n; i++) Rd (Col[i]), for (int i = 1; I <= query; i++) {rd (L[i]), RD (R[i]);p [i].x = L[i]; p[i].y = R[i]; p[i].id = i;} for (int i = 1; I <= query; i++) g[i].clear (); m_mst.work (1, query); now = 0;memset (siz, 0, sizeof siz);d FS (1,-1); t i = 1; I <= query; i++) {ll down = (LL) (R[i]-l[i] + 1) * (R[i] – l[i])/2;ll g = gcd (Up[i], down);p t (Up[i]/g), Putchar ('/'); Pt (down/g); Putchar (' \ n ');}} return 0;}
2038: [2009 countries Training team] small Z socks (hose) MO Team Algorithm