4537: [Hnoi2016] least common multiple

Source: Internet
Author: User

Description

Given a graph of n vertex m edges (vertex numbered,..., N) with weights on each edge. The ownership value can be decomposed into 2^a*3^b
The form. Now there are Q queries, each time you ask for a given four parameters U, V, a and B, please find out if there is a path between the vertex u to V, making
The least common multiple of the weighted value on the edge of the path is 2^a*3^b. Note: The path may not be a simple path. Here are some definitions that might be useful
: least common multiple: K number A1,A2,..., ak Least common multiple is the smallest positive integer that can be divisible by each AI. Path: path P:P1,P2,..., PK is the top
Point sequence, satisfies for any 1<=i<k, the node pi and the pi+1 have the edge to connect. Simple path: If the path p:p1,p2,..., PK, for any 1
<=s≠t<=k all have ps≠pt, then the path is called a simple path.

Input

The first line of the input file contains two integers n and m, representing the number of vertices and sides of the graph, respectively. Next m line, each line contains four integers u, V, a,
b represents a vertex between U and V, with a weight of 2^a*3^b edge. The next line contains an integer q, which represents the number of queries. Next Q line, each row contains four
integers u, V, a, and b represent a single query. Please refer to the question description for more information. 1<=n,q<=50000, 1<=m<=100000, 0<=a,b<=10^9

Output

For each query, if there is a path that satisfies the condition, the output line is yes, otherwise the output is one line No (note: The first letter is capitalized, the remaining
Letter lowercase).

Sample Input4 5
1 2 1 3
1 3 1 2
1 4 2 1
2 4 3 2
3 4 2 2
5
1 4 3 3
4 2 2 3
1 3 2 2
2 3 2 2
1 3 4 4Sample OutputYes
Yes
Yes
No
No

Exercises

http://blog.csdn.net/thy_asdf/article/details/51203421

Note that the collection cannot be compressed by the path, and it should be combined with heuristic

Code

1#include <cstdio>2#include <iostream>3#include <cmath>4#include <cstring>5#include <algorithm>6 using namespacestd;7 Charch;8 BOOLOK;9 voidReadint&x) {Ten      for(ok=0, Ch=getchar ();! IsDigit (CH); Ch=getchar ())if(ch=='-') ok=1; One      for(x=0; isdigit (ch); x=x*Ten+ch-'0', ch=GetChar ()); A     if(OK) x=-x; - } - Const intmaxn=150005; the intN,M,Q,RM,TOT,CNT,FA[MAXN],SIZ[MAXN],MAXA[MAXN],MAXB[MAXN]; - intFindintx) {returnX==FA[X]?X:find (fa[x]);} - BOOLANS[MAXN]; - structdata{ +     intU,v,a,b,id; -     voidInitinti) {read (U), read (v), read (a), read (b), id=i;} + }EDGE[MAXN],QUER[MAXN],TMP[MAXN]; A BOOLCmpaConstData &x,ConstData &y) {returnx.a<y.a| | (x.a==y.a&&x.b<y.b);} at BOOLCMPB (ConstData &x,ConstData &y) {returnx.b<y.b| | (x.b==y.b&&x.a<y.a);} - structoper{ -     intU,V,FA,SIZ,MA,MB; - }OPER[MAXN]; - voidMergeintUintVintAintb) { -U=find (u), v=Find (v); in     if(siz[u]>Siz[v]) swap (U,V); -oper[++cnt]=(Oper) {u,v,fa[u],siz[v],maxa[v],maxb[v]}; to     if(u==v) Maxa[u]=max (maxa[u],a), maxb[u]=Max (maxb[u],b); +     ElseFa[u]=v,siz[v]+=siz[u],maxa[v]=max (Maxa[v],max (maxa[u],a)), maxb[v]=Max (Maxb[v],max (maxb[u],b)); - } the voidundo () { *      for(; cnt;cnt--){ $fa[oper[cnt].u]=Oper[cnt].fa;Panax Notoginsengmaxa[oper[cnt].v]=oper[cnt].ma; -maxb[oper[cnt].v]=OPER[CNT].MB; thesiz[oper[cnt].v]=Oper[cnt].siz; +     } A } the intMain () { +Read (n), read (m), rm=sqrt (m); -      for(intI=1; i<=m;i++) Edge[i].init (i); $Sort (edge+1, edge+m+1, CMPA); $ read (q); -      for(intI=1; i<=q;i++) Quer[i].init (i); -Sort (quer+1, quer+q+1, CMPB); the      for(intI=1; i<=m;i+=RM) { -tot=0;Wuyi          for(intj=1; j<=q;j++)if(edge[i].a<=quer[j].a&& (i+rm>m| | QUER[J].A&LT;EDGE[I+RM].A)) tmp[++tot]=Quer[j]; theSort (edge+1, edge+I,CMPB); -          for(intj=1; j<=n;j++) fa[j]=j,siz[j]=1, maxa[j]=maxb[j]=-1; Wu          for(intj=1, k=1; j<=tot;j++){ -              for(; k<i&&edge[k].b<=tmp[j].b;k++) Merge (edge[k].u,edge[k].v,edge[k].a,edge[k].b); AboutCnt=0; $              for(intp=i;p<i+rm&&p<=m;p++)if(edge[p].a<=tmp[j].a&&edge[p].b<=tmp[j].b) - merge (edge[p].u,edge[p].v,edge[p].a,edge[p].b); -             intX=find (tmp[j].u), y=find (TMP[J].V); -Ans[tmp[j].id]= (x==y&&maxa[x]==tmp[j].a&&maxb[x]==tmp[j].b); A undo (); +         } the     } -      for(intI=1; i<=q;i++)if(Ans[i]) puts ("Yes");ElsePuts"No"); $     return 0; the}

4537: [Hnoi2016] least common multiple

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.