97th lesson: Spark streaming combined with spark SQL case

Source: Internet
Author: User

The code is as follows:

Package com.dt.spark.streamingimport org.apache.spark.sql.sqlcontextimport org.apache.spark. {sparkcontext, sparkconf}import org.apache.spark.streaming. {streamingcontext, duration}/** *  logs are analyzed using sparkstreaming combined with sparksql.  *  assuming e-commerce website click Log Format (Simplified) The following: * userid,itemid,clicktime *  requirements: processing the item click order within 10 minutes Top10, and display the name of the product. The correspondence between commodity itemid and commodity name is stored in the MySQL database  * created by dinglq on 2016/5/4. */object  loganalyzerstreamingsql {  val window_length = new duration (600  * 1000)   val slide_interval = new duration (10 * 1000)    Def main (args: array[string])  {    val sparkConf = new  Sparkconf (). Setappname ("Loganalyzerstreamingsql"). Setmaster ("local[4]")     VAL SC  = new sparkcontext (sparkconf)     val sQlcontext = new sqlcontext (SC)     import sqlContext.implicits._     //loading ItemInfo tables from the database     val itemInfoDF =  SqlContext.read.format ("JDBC"). Options (Map (       url "-> " jdbc:mysql:// Spark-master:3306/spark ",      " Driver "Com.mysql.jdbc.Driver",        "DBTable", "ItemInfo",       "user", "root",        "Password"->  "Vincent"       )). Load ()     iteminfodf.registertemptable ("ItemInfo")     val  Streamingcontext = new streamingcontext (Sc, slide_interval)     val  loglinesdstream = streamingcontext.textfilestream ("d:/logs_incoming")      Val accesslogsdstream = loglinesdstream. Map (Accesslog.parselogline). Cache ()     val windowDStream =  Accesslogsdstream.window (window_length, slide_interval)     windowdstream.foreachrdd ( accesslogs => {      if  (Accesslogs.isempty ())  {         println ("No logs received in this time  interval ")       } else {         ACCESSLOGS.TODF (). Registertemptable ("Accesslogs")          val sqlstr =  "Select a.itemid,a.itemname,b.cnt from iteminfo a join   " +          "   (Select itemid,count (*)  cnt from accesslogs group by itemid)  b  " +            " on  (A.itemid=b.itemid)  ORDER BY cnt DESC LIMIT 10  "         val toptenclickitemlast10minus = sqlcontext.sql (SQLSTR)         // Persist top ten table for  this window to hdfs as parquet file         toptenclickitemlast10minus.show ()       }    })      streamingcontext.start ()     streamingcontext.awaittermination ()    }}case class accesslog (userid: string, itemid: string, clicktime:  String)  {}object accesslog {  def parselogline (log: string):  AccessLog  = {    val loginfo = log.split (",")     if   (loginfo.length == 3)  {      accesslog (loginfo (0), Loginfo (1),  loginfo (2))      }    else {      accesslog ("0", "0", "0")     }  }}


The contents of the table in MySQL are as follows:

Mysql> SELECT * from spark.iteminfo;+--------+----------+| Itemid | ItemName |+--------+----------+| 001 | Phone | | 002 | Computer | | 003 | TV |+--------+----------+3 rows in Set (0.00 sec)


Create a directory in D logs_incoming


Run the spark streaming program.


Create a new file with the following contents:

0001,001,2016-05-04 22:10:200002,001,2016-05-04 22:10:210003,001,2016-05-04 22:10:220004,002,2016-05-04 22:10:230005,002,2016-05-04 22:10:240006,001,2016-05-04 22:10:250007,002,2016-05-04 22:10:260008,001,2016-05-04 22:10:270009,003,2016-05-04 22:10:280010,003,2016-05-04 22:10:290011,001,2016-05-04 22:10:300012,003,2016-05-04 22:10:310013,003,2016-05-04 22:10:32

Save the file in the directory logs_incoming and observe the output of the Spark program:

+------+--------+---+|itemid|itemname|cnt|+------+--------+---+|   001|  phone|   6| |      003|  tv|   4| |  002|computer| 3|+------+--------+---+



Note:

1. DT Big Data Dream Factory public number Dt_spark
2, the IMF 8 o'clock in the evening big data real combat YY Live channel number: 68917580
3, Sina Weibo: Http://www.weibo.com/ilovepains


This article is from the "Ding Dong" blog, please be sure to keep this source http://lqding.blog.51cto.com/9123978/1770198

97th lesson: Spark streaming combined with spark SQL case

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.