A3C Classic Source Code

Source: Internet
Author: User
Import Torch Import torch.nn as nn import torch.nn.functional as F from Torch.autograd import Variable import MATPLOTLIB.P Yplot as PLT import numpy as NP import math import random import OS Import Gym # Hyper Parameters State_dim = 4 Action_di M = 2 Step = Sample_nums = Class Actornetwork (NN.
        Module): Def __init__ (self,input_size,hidden_size,action_size): Super (Actornetwork, self). __init__ () SELF.FC1 = nn. Linear (input_size,hidden_size) self.fc2 = nn. Linear (hidden_size,hidden_size) self.fc3 = nn. Linear (Hidden_size,action_size) def forward (self,x): out = F.relu (SELF.FC1 (x)) out = F.relu (SELF.FC2 ( Out) is out = F.log_softmax (SELF.FC3) return out class Valuenetwork (NN).
        Module): Def __init__ (self,input_size,hidden_size,output_size): Super (Valuenetwork, self). __init__ () SELF.FC1 = nn. Linear (input_size,hidden_size) self.fc2 = nn. Linear (hidden_size,hidden_size) self.fc3 = nn. Linear (Hidden_size,output_size) def forward (self,x): out = F.relu (SELF.FC1 (x)) out = F.relu (SELF.FC2 ( Out) out = SELF.FC3 [out] return out def roll_out (actor_network,task,sample_nums,value_network,init_state ): #task. Reset () states = [] actions = [] Rewards = [] Is_done = False Final_r = 0 state = ini T_state for J in Range (Sample_nums): States.append (state) log_softmax_action = Actor_network (Variable (Torch. Tensor ([State])) Softmax_action = Torch.exp (log_softmax_action) action = Np.random.choice (action_dim,p=so Ftmax_action.cpu (). Data.numpy () [0]) one_hot_action = [Int (k = = action) for k in range (Action_dim)] Next_st
        Ate,reward,done,_ = Task.step (action) #fix_reward = -10 if done else 1 actions.append (one_hot_action) Rewards.append (reward) Final_state = next_state state = Next_State if Done:is_don
       E = True     State = Task.reset () break if not is_done:final_r = Value_network (Variable (torch. Tensor ([final_state])). CPU (). Data.numpy () return states,actions,rewards,final_r,state def discount_reward (R, Gamma
        , final_r): Discounted_r = Np.zeros_like (r) Running_add = Final_r for T in reversed (range (0, Len (r))): Running_add = Running_add * gamma + r[t] discounted_r[t] = running_add return discounted_r def Main (): #  Init a task generator for data Fetching task = Gym.make ("cartpole-v0") Init_state = Task.reset () # init value  Network Value_network = valuenetwork (input_size = state_dim,hidden_size = 40,output_size = 1) value_network_optim = Torch.optim.Adam (Value_network.parameters (), lr=0.01) # init actor Network Actor_network = Actornetwork (state_d Im,40,action_dim) Actor_network_optim = Torch.optim.Adam (Actor_network.parameters (), LR = 0.01) Steps =[] Task

_episodes =[] Test_results =[]    For step in range (step): States,actions,rewards,final_r,current_state = Roll_out (actor_network,task,sample_num s,value_network,init_state) Init_state = current_state Actions_var = Variable (torch. Tensor (Actions). View ( -1,action_dim)) States_var = Variable (torch. Tensor (states). View ( -1,state_dim)) # Train actor Network () Actor_network_optim.zero_grad Max_actions = Actor_network (states_var) vs = Value_network (States_var). Detach () # Calculate QS Qs = Variable (torch. Tensor (Discount_reward (rewards,0.99,final_r)) advantages = Qs-vs Actor_network_loss =-Torch.mean (tor Ch.sum (log_softmax_actions*actions_var,1) * advantages) Actor_network_loss.backward () torch.nn.utils.clip_g Rad_norm (Actor_network.parameters (), 0.5) Actor_network_optim.step () # Train Value Network Value_n Etwork_optim.zero_grad () target_values = QS values = value_netWork (States_var) criterion = nn. Mseloss () Value_network_loss = criterion (values,target_values) Value_network_loss.backward () torch . Nn.utils.clip_grad_norm (Value_network.parameters (), 0.5) Value_network_optim.step () # Testing if (step + 1)% 50== 0:result = 0 Test_task = gym.make ("Cartpole-v0") for Te
                        St_epi in Range (a): state = Test_task.reset () to Test_step in range (200): Softmax_action = Torch.exp (actor_network Variable (torch. Tensor ([State]))) #print (softmax_action.data) action = Np.argmax (softmax_
                        Action.data.numpy () [0]) Next_state,reward,done,_ = Test_task.step (action) Result + = Reward state = Next_State if done:b Reak Print ("Step: ", step+1," test result: ", result/10.0) steps.append (step+1) test_results.append (RESULT/10) if __name__ = = ' __main__ ': Main ()

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.