[ab initio math] section 197th statistical cases

Source: Internet
Author: User

plot summary:
[Machine Xiao Wei] in the [engineer Ah Wei] accompanied by the [nine turn elixir] of the five-turn of the cultivation.
This is a [statistical case] study.

Drama Start:


Star Calendar April 26, 2016 16:34:30, the Milky Way Galaxy Earles the Chinese Empire Jiangnan Line province.
[Engineer Ah Wei] is working with [machine Xiao Wei] to study [statistical cases].








<span style= "FONT-SIZE:18PX;" >x= [165, 165, 157, he, 175, 165, 155, 170]y= [48, 57, 50, 54, 64, 61, 43, 59] Fitting Result: Y =    0.84848 X +  85.71212 , r=   0.79847def linefit (x, y):        N = float (len (x))        sx,sy,sxx,syy,sxy=0,0,0,0,0 for        i in range (0,int (N)):            SX  + x[i]            sy  + y[i]            sxx + x[i]*x[i]            syy + = Y[i]*y[i]            sxy + = X[i]*y[i]        a = (sy*sx /N-SXY)/(sx*sx/n-sxx)        B = (SY-A*SX)/n        r = ABS (SY*SX/N-SXY)/math.sqrt ((sxx-sx*sx/n) * (syy-sy*sy/n))        return a,b,r            def tmp ():        x=[165, 165, 157,, 175, 165, 155, [];       Y=[, the ",", ",", ",", ",";            A,b,r=linefit (x, y) print ("        x=", x) print ("        y=", y) print (        "fit result: Y =%10.5f X +%10.5f, r=%10.5f"% (a,b,r));    </span>

<span style= "FONT-SIZE:18PX;"                  > if (1) {var r = 20;                    Config.setsector (10,5,9,1);                  Config.graphpaper2d (0, 0, R);                                  Config.axis2d (0, 0, 320, 1.6);                Axis set var ScaleX = 2*r, ScaleY = 2*r;                 var SpaceX = 2, SpaceY = 10;                var XS =, XE = 180;                var YS = 0, YE = 70;                  Config.axisspacing (XS, XE, SpaceX, ScaleX, ' X ');                                       Config.axisspacing (YS, YE, SpaceY, ScaleY, ' Y ');                            var x=[165, 165, 157, 54, 175, 165, 155, [], y=[48, 57, 50,, 64, 61, 43, 59];            var array = [];                        var size = X.length;            for (var i = 0; i < size; i++) {Array.push ([x[i], y[i]]);            } var transform = new transform ();                        var tmp = []; Array = Transform. Scale (Transform.translate (array,-xs,-ys), Scalex/spacex, Scaley/spacey);                  TMP = [].concat (array);                   Shape.pointdraw (TMP, ' green ');          array = [];            for (var i = 0; i < size; i++) {Array.push ([x[i], Taskfun (X[i])]);            } array = Transform.scale (transform.translate (array,-xs,-ys), Scalex/spacex, Scaley/spacey);                  TMP = [].concat (array);                 Shape.multilinedraw (TMP, ' red ');          Plot.setfillstyle (' Blue ');                              Plot.filltext (' fitting results: y = 0.84848x-85.71212 ', 30,-270, 200); }} function Taskfun (x) {return 0.84848*x-85.71212;} </span>





<span style= "FONT-SIZE:18PX;" >[21, 23, 25, 27, 29, 32, 35][1.9459101490553132, 2.3978952727983707, 3.044522437723423, 3.1780538303479458, 4.189654742026425, 4.74493212836325, 5.783825182329737]x= [1.9459101490553132, 2.397895272, +, +, +,] 7983707, 3.044522437723423, 3.1780538303479458, 4.189654742026425, 4.74493212836325, 5.783825182329737] fit result: y =    0.27203 x +   -3.84917, r=   0.99260</span>


<span style= "FONT-SIZE:18PX;"                  > if (1) {var r = 20;                    Config.setsector (10,5,9,1);                  Config.graphpaper2d (0, 0, R);                                  Config.axis2d (0, 0, 320, 1.6);                Axis set var ScaleX = 2*r, ScaleY = 2*r;                 var SpaceX = 1.5, SpaceY = 1;                var XS = +, XE = 36;                var YS = 0, YE = 7;                  Config.axisspacing (XS, XE, SpaceX, ScaleX, ' X ');                               Config.axisspacing (YS, YE, SpaceY, ScaleY, ' Y '); var X = [1.9459101490553132, 2.3978952727983707, 3.044522437723423, 3.178053830347945, +, 35];var Y =                        8, 4.189654742026425, 4.74493212836325, 5.783825182329737];            var array = [];                        var size = X.length;            for (var i = 0; i < size; i++) {Array.push ([x[i], y[i]]); } var transform = new transform ();            var tmp = [];                Array = Transform.scale (transform.translate (array,-xs,-ys), Scalex/spacex, Scaley/spacey);                  TMP = [].concat (array);                   Shape.pointdraw (TMP, ' green ');          array = [];            for (var i = 0; i < size; i++) {Array.push ([x[i], Taskfun (X[i])]);            } array = Transform.scale (transform.translate (array,-xs,-ys), Scalex/spacex, Scaley/spacey);                  TMP = [].concat (array);                 Shape.multilinedraw (TMP, ' red ');          Plot.setfillstyle (' Blue ');                              Plot.filltext (' fitting results: y = 0.27203x-3.84917 ', 30,-270, 200); }} function Taskfun (x) {return 0.27203*x-3.84917;} </span>



<span style= "FONT-SIZE:18PX;" >>>> confidence level > 99.9%, k^2 = 56.631879146114834# independence Test def Tmp3 ():    #数据    #[a, b]    #[c, d]    a = 7775;< C6/>b =;    c = 2099;    d =;    Ksquare = (a+b+c+d) * (a*d-b*c) **2/(a+b)/(C+D)/(A+C)/(b+d);    #置信度查对表    Trust = [[0.5,0.455],[0.4,0.708],[0.25,1.323],[0.15,2.072],[0.1,2.706],             [0.025,5.024],[ 0.01,6.635],[0.005,7.879],[0.001,10.828]];    size = Len (trust);    For I in range (size-1,-1,-1):        if Ksquare >= trust[i][1]:            print (' confidence > {0}%, k^2 = {1} '. Format (Round (1-t Rust[i][0]) *100, 3), ksquare));            Return trust[i][0];</span>




<span style= "FONT-SIZE:18PX;" >>>> confidence level > 99.9%, k^2 = 16.37320688824579# Independence Test # example 1def Tmp3 ():    #数据    #[a, b]    #[c, d]    a = 214< C6/>b = 175    c = 451    d = 597    Ksquare = (a+b+c+d) * (a*d-b*c) **2/(a+b)/(C+D)/(A+C)/(b+d);    #置信度查对表    Trust = [[0.5,0.455],[0.4,0.708],[0.25,1.323],[0.15,2.072],[0.1,2.706],             [0.025,5.024],[ 0.01,6.635],[0.005,7.879],[0.001,10.828]];    size = Len (trust);    For I in range (size-1,-1,-1):        if Ksquare >= trust[i][1]:            print (' confidence > {0}%, k^2 = {1} '. Format (Round (1-t Rust[i][0]) *100, 3), ksquare));            Return trust[i][0];</span>



<span style= "FONT-SIZE:18PX;" >>>> confidence level > 97.5%, k^2 = 6.109090909090909# Independence Test # 1def Tmp3 ():    #数据    #[a, b]    #[c, d]    a = 10
   b =    c =    D =    Ksquare = (a+b+c+d) * (a*d-b*c) **2/(a+b)/(C+D)/(A+C)/(b+d);    #置信度查对表    Trust = [[0.5,0.455],[0.4,0.708],[0.25,1.323],[0.15,2.072],[0.1,2.706],             [0.025,5.024],[ 0.01,6.635],[0.005,7.879],[0.001,10.828]];    size = Len (trust);    For I in range (size-1,-1,-1):        if Ksquare >= trust[i][1]:            print (' confidence > {0}%, k^2 = {1} '. Format (Round (1-t Rust[i][0]) *100, 3), ksquare));            Return trust[i][0];</span>




<span style= "FONT-SIZE:18PX;" >>>> x= [126.974, 96.933, 86.656, 63.438, 55.264, 50.976, 39.069, 36.156, 35.209, 32.416]y= [4.224, 3.835, 3.5 1, 3.758, 3.939, 1.809, 2.946, 0.359, 2.48, 2.413] fit result: y =    0.02556 x +    1.33452, r=   0.67615</span>


<span style= "FONT-SIZE:18PX;"                  > if (1) {var r = 20;                    Config.setsector (10,5,9,1);                  Config.graphpaper2d (0, 0, R);                                  Config.axis2d (0, 0, 320, 1.6);                Axis set var ScaleX = 2*r, ScaleY = 2*r;                 var SpaceX = ten, SpaceY = 1;                var XS = 0, XE = 150;                var YS = 0, YE = 10;                  Config.axisspacing (XS, XE, SpaceX, ScaleX, ' X ');                               Config.axisspacing (YS, YE, SpaceY, ScaleY, ' Y '); var X = [126.974, 96.933,86.656,63.438,55.264,50.976,39.069,36.156,35.209,32.416];var Y = [                        4.224,3.835,3.510,3.758,3.939,1.809,2.946,0.359,2.480,2.413];            var array = [];                        var size = X.length;            for (var i = 0; i < size; i++) {Array.push ([x[i], y[i]]);            } var transform = new transform ();    var tmp = [];                    Array = Transform.scale (transform.translate (array,-xs,-ys), Scalex/spacex, Scaley/spacey);                  TMP = [].concat (array);                   Shape.pointdraw (TMP, ' green ');          array = [];            for (var i = 0; i < size; i++) {Array.push ([x[i], Taskfun (X[i])]);            } array = Transform.scale (transform.translate (array,-xs,-ys), Scalex/spacex, Scaley/spacey);                  TMP = [].concat (array);                 Shape.multilinedraw (TMP, ' red ');          Plot.setfillstyle (' Blue ');                              Plot.filltext (' fit result: y = 0.02556*x + 1.33452 ', 30,-270, 200); } </span>


<span style= "FONT-SIZE:18PX;" > Confidence level > 90.0%, k^2 = 3.6889201613659814# Independence Test # 3def Tmp3 ():    #数据    #[a, b]    #[c, d]    a = from    B = 31
   
    c = 8    d =    Ksquare = (a+b+c+d) * (a*d-b*c) **2/(a+b)/(C+D)/(A+C)/(b+d);    #置信度查对表    Trust = [[0.5,0.455],[0.4,0.708],[0.25,1.323],[0.15,2.072],[0.1,2.706],             [0.025,5.024],[ 0.01,6.635],[0.005,7.879],[0.001,10.828]];    size = Len (trust);    For I in range (size-1,-1,-1):        if Ksquare >= trust[i][1]:            print (' confidence > {0}%, k^2 = {1} '. Format (Round (1-t Rust[i][0]) *100, 3), ksquare));            Return trust[i][0];</span>
   



<span style= "FONT-SIZE:18PX;" >>>> x= [126.974, 96.933, 86.656, 63.438, 55.264, 50.976, 39.069, 36.156, 35.209, 32.416]y= [4.224, 3.835, 3.5 1, 3.758, 3.939, 1.809, 2.946, 0.359, 2.48, 2.413] fitting result: y = 0.02556 x + 1.33452, r= 0.67615SSG = 12.8701800999999 Close, SSE = 6.986174058384116, SSR = 5.884006041615882 residuals: [-0.356302026825019, 0.02262360033670774,-0.039669709794743824 , 0.8018423973734929, 1.1917909702046225,-0.8285966637200308, 0.6127770403049579,-1.8997591485062628, 0.24544861984106747, 0.24984492078520049] regression: [1.653002026825019, 0.885076399663292, 0.6223697097947434, 0.02885760262650683,-0.18009097020462272,-0.28970333627996947,-0.594077040304958,-0.6685408514937374,- 0.6927486198410677, -0.7641449207852009]def tmp (): X = [126.974, 96.933,86.656,63.438,55.264,50.976,39.069,36.156,3    5.209,32.416];    Y = [4.224,3.835,3.510,3.758,3.939,1.809,2.946,0.359,2.480,2.413]; A,b,r=linefit (x, y) print ("x=", X) print ("y=", Y) print ("Fit Result: y =%10.5f x +%10.5f, r=%10.5f "% (a,b,r));    size = Len (X);    #平均值 average = SUM (Y)/size;    SST = 0;    #残差 residual = [];    SSE = 0;    #回归 regression = [];    SSR = 0;        For I in range (size): SST + = (y[i]-average) **2;        value = A*x[i]+b;        Residual.append (Y[i]-value);        SSE + = (y[i]-value) **2;        Regression.append (Value-average);            SSR + = (value-average) **2;    Print (' SSG = {0}, SSE = {1}, SSR = {2} '. Format (SST, SSE, SSR));    Print (' residuals: ', residual); Print (' regression: ', regression);</span>


The end of this section, to know how to funeral, please see tell.

[ab initio math] section 197th statistical cases

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.