An extension of "turn" Euler's integral

Source: Internet
Author: User

Solve $$\int_0^{\frac{\pi}{2}} {{{\ln}^2}\sin XDX} = \int_0^{\frac{\pi}{2}} {{{\ln}^2}\cos XDX} $$ value.

Apparently \[\int_0^{\frac{\pi}{2}} {{{\ln}^2}\sin XDX} \underline{\underline {{\text{order}x = \frac{\pi}{2}-t}}} \int_0^{\frac{\ Pi}{2}} {{{\ln}^2}\cos xdx}.\]

Remember to ask for integral for $i$, notice

(1) $\int_0^\pi {{\ln}^2}\sin \left (x \right) dx} = 2\int_0^{\frac{\pi}{2}} {{{\ln}^2}\sin XDX} = 2i$;

(2) $\int_0^\pi {\ln \sin XDX} = 2\int_0^{\frac{\pi}{2}} {\ln \sin XDX} \text{(Euler integral)} =-\pi \ln 2$;

(3) $\sum\limits_{n = 1}^\infty {\frac{{{{\left ({-1} \right)}^{n-1}}}}{{{{\left ({2n-1} \right)}^3}}}}=\beta (3) = \frac{{{\pi ^3}}}{32}$, where $\beta (s) $ is Dirichlet beta function;

(4) $\int_0^{\frac{\pi}{2}} {{{\ln}^2}\tan XDX} = \int_0^{\frac{\pi}{2}} {{{\ln}^2}\cot XDX} = \frac{{{\pi ^3}}}{8}.$

In fact, we have

\begin{align*}\int_0^{\frac{\pi}{2}} {{{\ln}^2}\tan XDX} &= \int_0^\infty {\frac{{{{\ln}^2}x}}{{1 + {X^2}}}DX} = 2\int_0^1 {\frac{{{{\ln}^2}x}}{{1 + {X^2}}}DX} = 2\int_0^1 {{{\ln}^2}x\sum\limits_{n = 1}^\infty {{{\left}} \right)}^{n-1}}} dx} \\&= 2\sum\limits_{n = 1}^\infty {{{\left ({-1} \right)}^{n-1}}\int_0^1 {{x^{2n-2}}{{\l   N}^2}XDX}} = 4\sum\limits_{n = 1}^\infty {\frac{{{{\left ({-1} \right)}^{n-1}}}}{{{{\left ({2n-1} \right)}^3}}} = \frac{{{\pi ^3}}}{8}.\end{align*}

and

\begin{align*}2i &= \int_0^{\frac{\pi}{2}} {{\left[\left {\ln ({2x} \sin)-\left 2} \right)} \ln]} ^2}DX}-\int_0^{\frac{\pi}{2}} {2\ln \sin x\ln \cos XDX} \\&{= \int_0^{\frac{\pi}{2}} {{{\ln}^2}\sin \left ({2x} \right) dx}-2\ln 2\int_0^{\frac{\pi}{2}} {{\rm{lnsin}}\left ({2x} \right) dx} + \frac{{{{\ln}^2}2}}{2}\pi-\int_0^{ \frac{\pi}{2}} {2\ln \sin x\ln \cos XDX}}\\&{= \frac{1}{2}\int_0^\pi {{{\ln}^2}\sin \left (x \right) dx}-\ln 2\ int_0^\pi {\ln \sin XDX} + \frac{{{{\ln}^2}2}}{2}\pi-\int_0^{\frac{\pi}{2}} {2\ln \sin x\ln \cos XDX}}\\&{= I + \frac{{3{{\ln}^2}2}}{2}\pi-2\int_0^{\frac{\pi}{2}} {\ln \sin x\ln \cos XDX}}.\end{align*}

\[2i = \int_0^{\frac{\pi}{2}} {{{\ln}^2}\tan XDX} + 2\int_0^{\frac{\pi}{2}} {\ln \sin x\ln \cos XDX}. \]

So

\begin{align*}3i &= \int_0^{\frac{\pi}{2}} {{{\ln}^2}\tan XDX} + \frac{{3{{\ln}^2}2}}{2}\pi = \frac{{{\pi ^3}}}{8 } + \frac{{3{{\ln}^2}2}}{2}\pi \\i &= \frac{{{\pi ^3}}}{{24} + \frac{{{{\ln}^2}2}}{2}\pi.\end{align*}

At the same time we have

\[\int_0^{\frac{\pi}{2}} {\ln \sin x\ln \cos XDX} = \frac{{{{\ln}^2}2}}{2}\pi-\frac{{{\pi ^3}}}{{48}}.\]

This question is very good, haha, is an extension of Euler integral.

For Dirichlet beta functions, refer to:

Http://mathworld.wolfram.com/DirichletBetaFunction.html or Http://en.wikipedia.org/wiki/Dirichlet_beta_function.

Solution Two: $$ \beta (x, y) = 2\int_0^{\frac{\pi}{2}} \sin^{2x-1} (t) \cos^{2y-1} (t) \ dt $$

$$ \frac{\partial}{\partial x} \beta (x, y) = 4\int_0^{\frac{\pi}{2}} \sin^{2x-1} (t) \ln (\sin t) \cos^{2y-1} (t) \ dt$$

$$ \frac{\partial}{\partial y} \left (\frac{\partial}{\partial x} \beta (x, y) \right) = 8\int_0^{\frac{\pi}{2}} \sin^{ 2x-1} (t) \ln (\sin t) \ln (\cos t) \cos^{2y-1} (t) \ dt $$

And we have $$ \beta (x, y) = \frac{\gamma (×) \gamma (y)}{\gamma (x+y)} $$

So differentiate and put $ x =\frac{1}{2}, y = \frac{1}{2} $

$$ \psi \left (\frac{1}{2} \right) = -2\ln 2-\gamma $$

$$ \psi (1) =-\gamma $$

$$ \psi^{(1)} (1) = \frac{\pi^2}{6} $$

$$ \beta \left (\frac{1}{2}, \frac{1}{2} \right) = \frac{\gamma \left (\frac{1}{2} \right) ^2}{\gamma (1)} = \pi $$

Thus you'll have the integral $ = \frac{\pi}{8} \left (4\ln (2) ^2-\frac{\pi^2}{6} \right) $

See: Http://math.stackexchange.com/questions/492878/find-int-0-frac-pi2-ln-sinx-ln-cosx-mathrm-dx?rq=1

Solution Three: A third approach would be the the Fourier series:

Namely, consider

$$\ln \left (2\sin \frac{x}{2}\right) =-\sum_{n=1}^{\infty}\frac{\cos nx}{n};(0<x<2\pi) $$

After squared:

$$\ln^2\left (2\sin \frac{x}{2}\right) =\sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\frac{\cos Kx\cos nx}{kn}$$

Now, integrate the last equation from $x =0$ to $x =\pi$

On the right side, we get:

$$\frac{\pi}{2}\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi}{2}\frac{\pi^2}{6}=\frac{\pi^3}{12}$$

Because $ $I =\int_{0}^{\pi}\cos kx\cos nx\,dx=0;k\neq n$$ $ $I =\frac{\pi}{2};k=n$$

On the left side:

$$\int_{0}^{\pi}\ln^2\left (2\sin \frac{x}{2}\right) \,dx= \ln^22 \int_{0}^{\pi}dx + 4\ln 2 \int_{0}^{\frac{\pi}{2}} \LN \left (\sin x\right) dx+2 \int_{0}^{\frac{\pi}{2}} \ln^2 \left (\sin x\right) dx $$

Since we know that $ \int_{0}^{\frac{\pi}{2}} \ln (\sin x) dx=-\frac{\pi}{2}\ln (2) $ then we get $ \int_{0}^{\frac{\pi}{2}} \LN^{2} (\sin x) dx $ from the equation.

Solution Four:

Here is a completely different-approach this integral, which relies on some elementary complexanalysis ( cauchy ' s theorem). It is based in an approach which I had seen several times employed to compute $\int_0^{\pi/2}\log{(\sin{x})}\,dx$ (partic Ularly, in Ahlfors's book).

The idea was to integrate the principal branch of $f (z): = \log^2{(1-e^{2iz})} = \log^2{( -2ie^{iz}\sin{z})}$ over the con Tour below, and then let $R \to \infty$ and $\epsilon \to 0$.

First of all, $1-e^{2iz} \leq 0$ If $z = K\pi + iy$, where $k $ is integral and $y \leq 0$. Thus, in the region of the plane which are obtained by omitting the lines $\{k\pi + iy:y\leq 0\}$ for $k \in \mathbb z$, t He principal branch of $\log{(1-e^{2iz})}$ is defined and analytic. Note that, for each fixed $R $ and $\epsilon$, the contour we wish to integrate over are contained entirely within this Regi On.

By Cauchy ' s theorem, the integral over the contour vanishes for each fixed $R $. Since $f (x + IR) = \log^2{(1-e^{2ix}e^{-2r})} \to 0$ uniformly as $R \to \infty$, the integral over the segment $[IR,\PI /2 + ir]$ vanishes in the limit. Similarly, since $1-e^{2iz} = O (z) $ as $z \to 0$, we have $f (z) = O (\log^2{|z|}) $ for small enough $z $, which, since $\epsilon \log^2{\epsilon} \to 0$ with $\epsilon$, means that the the integral over The circular arc from $i \epsilon$ to $\epsilon$ vanishes as $\epsilon \to 0$.

From the vertical sides of the contour, we get the the contribution

\BEGIN{ALIGN*}\INT_{[\PI/2,\PI/2 + IR]} + \int_{[ir,i\epsilon]} f (z) \,dz & = I\int_0^r F (\pi/2 + iy) \,dy-i\int_\epsil On^r f (iy) \,dy.\end{align*}

Since $f (iy) $ and $f (\PI/2 + iy) $ is real, this contribution is purely imaginary.

Finally, the contribution from the bottom side of the contour, after letting $\epsilon \to 0$, is

\BEGIN{ALIGN*}\INT_0^{\PI/2} f (x) \,dx = \INT_0^{\PI/2} \log^2{( -2ie^{ix}\sin{x})}\,dx,\end{align*}

And we know from the preceding remarks, the real part of this integral must vanish. For $x $ between $0$ and $\pi/2$, the quantity $2\sin{x}$ is positive. Writing $-ie^{ix} = e^{i (x-\PI/2)}$, we see this $x-\pi/2$ is the unique value of $\arg{( -2ie^{ix}\sin{x})}$ which lie S in $ (-\PI,\PI) $. Since we have chosen the principal branch of $\log{z}$, it follows from these considerations that $\log{( -2ie^{ix}\sin{x}) } = \log{(2\sin{x})} + I (X-\PI/2) $, and therefore that

\begin{align*}\text{re}{f (x)} &= \log^2{(2\sin{x})}-(X-\PI/2) ^2 \\&= \log^2{(\sin{x})} + 2\log{2}\log{(\sin{ X})} + \log^2{2}-(X-\PI/2) ^2.\end{align*}

By setting $\INT_0^{\PI/2} \text{re}f (x) \,dx = 0$ we get

\BEGIN{ALIGN*}\INT_0^{\PI/2} \log^2{(\sin{x})}\,dx &= \INT_0^{\PI/2} (X-\PI/2) ^2\,DX-2\LOG{2}\INT_0^{\PI/2} \ log{(\sin{x})}\,dx-\frac{\pi}{2}\log^2{2} \\& = \frac{1}{3}\left (\frac{\pi}{2}\right) ^3 + \frac{\pi}{2} \log^2{2 }\end{align*}

As expected

By similar methods, one can compute a variety of integrals of this form with little difficulty. Here is some examples I has computed for fun. All is proved by the same method, with the same contour, but different functions $f $.

1. Take $f (z) = \log{(1 + e^{2iz})} = \log{(2e^{iz}\cos{z})}$ and compare imaginary parts to get

$$\int_0^\infty \log{(\coth{y})}\,dy = \frac{1}{2}\left (\frac{\pi}{2}\right) ^2.$$

2. Related to the question of yours (which incidentally led me here), one can show by taking $f (z) = \log^4 (1 + e^{2iz}) $ And comparing real parts that

$$\INT_0^{\PI/2} x^2\log^2{(2\cos{x})}\,dx = \frac{1}{30}\left (\frac{\pi}{2}\right) ^5 + \FRAC{1}{6}\INT_0^{\PI/2} \ log^4{(2\cos{x})}\,dx.$ $Assuming The result of the other question, we then get

$$\INT_0^{\PI/2} \log^4{(2\cos{x})}\,dx = \frac{19}{15}\left (\frac{\pi}{2}\right) ^5.$$

3.Also related to the question cited in 2., taking $f (z) = z^2\log^2{(1 + e^{2iz})}$ and comparing real parts gives

$$\int_0^{\pi/2}x^2\log^2{(2\cos{x})}\,dx = \frac{1}{5}\left (\frac{\pi}{2}\right) ^5 + \pi \int_0^\infty y\log^2{(1-e ^{-2Y})}\,dy.$$

Once more, assuming the result of the other question, we get

$$\int_0^\infty y\log^2{(1-e^{-2y})}\,dy = \frac{1}{45}\left (\frac{\pi}{2}\right) ^4.$$

Actually, the integral in 3. Have several interesting series expansions, and I would be very interested if someone could compute it without using the RE Sult from the question I cited. For one thing, that would give us a different proof of this result (which is what I started investigating it in the first P Lace).

See: http://math.stackexchange.com/questions/58654/ integrate-square-of-the-log-sine-integral-int-0-frac-pi2-ln2-sinx/58672#58672

Then look at the promotion:

\[\int_0^{\frac{\pi}{2}} {{{\ln}^n}\sin XDX} = \frac{{\sqrt \pi}}{{{2^{n + 1}}}}\frac{{{d^k}}}{{d{\alpha ^k}}}{\left ( {\frac{{\gamma \left ({\frac{{2\alpha + 1}}{2}} \right)}}{{\gamma \left ({\frac{{2\alpha + 2}}{2}} \right)}}} \right) _{ \alpha = 0}}.\]

proof. Note \[\int_0^{\frac{\pi}{2}} {{{\ln}^n}\sin XDX} = \int_0^{\frac{\pi}{2}} {\frac{{{{\ln}^n}t}}{{\sqrt {1-{t^2}}}}DT }. \]

Make \[i\left (\alpha \right) = \int_0^1 {\frac{{{t^{2\alpha}}}}{{\sqrt {1-{t^2}}}}dt} = \frac{1}{2}b\left ({\frac{1}{2} , \frac{{2\alpha + 1}}{2}} \right) = \frac{{\sqrt \pi}}{2}\frac{{\gamma \left ({\frac{{2\alpha + 1}}{2}} \right)}}{{\Ga MMA \left ({\frac{{2\alpha + 2}}{2}} \right)}},\]

Then there is \[{i^{\left (n \right)}}\left (\alpha \right) = \int_0^1 {\frac{{{t^{2\alpha}}{2^n}{{\ln}^n}t}}{{\sqrt {1-{t^2}}} DT}. \]

Therefore there are

\[\int_0^{\frac{\pi}{2}} {{{{\ln}^n}\sin XDX} = \int_0^{\frac{\pi}{2}} {\frac{{{{\ln}^n}t}}{{\sqrt {1-{t^2}}}}dt} = \frac{{{i^{\left (n \right)}}\left (0 \right)}}{{{2^n}} = \frac{{\sqrt \pi}}{{{2^{n + 1}}}}\frac{{{d^k}}}{{d{\alpha ^ K}}}{\left ({\frac{{\gamma \left ({\frac{{2\alpha + 1}}{2}} \right)}}{{\gamma \left ({\frac{{2\alpha + 2}}{2}} \right)}} } \right) _{\alpha = 0}}.\]

An alternative solution

Use generating series. Consider the function $ $f (z) =\sum_{k=0}^{\infty}s_{k}\frac{z^{k}}{k!}. $$ then $ $f (z) =\int_0^1 \left (\sum_{k=0}^\infty ( -1) ^k \log^k (\sin (\pi x)) z^k \right) dx=\int_{0}^{1}\frac{1}{\sin\  Left (\pi x\right) ^{z}}dx=\frac{\gamma\left (\frac{1-z}{2}\right)}{\sqrt{\pi}\gamma\left (1-\frac{z}{2}\right)}.$$ The last equality follows from a identity of the Beta Function and then applying the duplication Formula. From here, differentiating and plugging in $z =0$ allows you to conclude.

See: Http://math.stackexchange.com/questions/121473/solve-the-integral-s-k-1k-int-01-log-sin-pi-xk-dx?rq=1

You can also refer to these questions:

Http://math.stackexchange.com/questions/307593/a-hard-log-definite-integral-int-0-pi-4-ln3-sin-x-mathrm-dx?lq=1

or http://math.stackexchange.com/questions/289587/log-sin-and-log-cos-integral-maybe-relate-to-fourier-series/309781#309781.

Http://math.stackexchange.com/questions/330057/how-to-evaluate-i-displaystyle-int-0-pi-2x2-ln-sin-x-ln-cos-xdx

This article transferred from: http://eufisky.is-programmer.com/posts/54402.html

An extension of "turn" Euler's integral

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.