Answers to questions about 2012 mathematics analysis postgraduate entrance exams of Huazhong Normal University

Source: Internet
Author: User

From xulu1352

 

I.

(1) proof: by $ {x }_{ 1 }}=\ frac {1} {2 }, {x }_{ 2 }}=\ frac {3} {8}, {x }_{ 3 }}=\ frac {55} {128 }, \ cdots $. I guess $ \{{ x }_{ 2n + 1 }}\}$ monotonically decreases, $ \{{ x }_{ 2n }}\} $ monotonically incrementing

Use the number method to verify first $ \ SQRT {2}-1 \ le {x }_{ 2n + 1 }}\ Le \ frac {1} {2 }, \ frac {3} {8} \ le {x }_{ 2n + 1 }}\ Le \ SQRT {2}-1 $

(1) When $ n = 1 $, $ \ SQRT {2}-1 {x }_{ 1 }}=\ frac {1} {2} $ hengchengli

(2) When $ n = 2k-1 $ is set, $ \ SQRT {2}-1 \ le {x }_{ 2k-1 }}\ Le \ frac {1} {2} $, then

\ [{X }_{ 2 k + 1 }=\ frac {1} {2} (416_{ 2 k} ^ {2 }) =\ frac {1} {2} [1-\ frac {1} {4} {(_ {2k-1} ^ {2 })} ^ {2}] \ in [\ SQRT {2}-1, \ frac {1} {2}) \]

That is, when $ n = 2 k + 1 $

From (1) (2: $ \ SQRT {2}-1 \ le {x }_{ 2n + 1 }}\ Le \ frac {1} {2} $

Likewise, it can be proved that $ \ frac {3} {8} \ le {x }_{ 2n + 1 }}\ Le \ SQRT {2}-1 $

Then, we prove that $ \{{ x }_{ 2n + 1 }\}$ monotonically decreases, and $ \{{{ x }_{ 2n }}\}$ monotonically increases, mathematical induction

(1) When $ n = 1 $, $ {x }_{ 1 }}=\ frac {1} {2} \ frac {55} {128 }={{ x }_{ 3 }}$ hengchengli

(2) When $ n = 2k-1 $ is set, $ {x }_{ 2k-1 }}\ Ge {x }_{ 2 k + 1 }}$, then

$ {X }_{ 2 K + 3 }}- {x }_{ 2 k + 1 }}=\ frac {1} {8} [{() _ {2k-1} ^ {2 })} ^ {2 }}- {(416_{ 2 k + 1} ^ {2 })} ^ {2 }}] =\ frac {1} {8} (X _ {2 k + 1} ^ {2}-X _ {2k-1} ^ {2 }) (2-x _ {2 k + 1} ^ {2}-X _ {2k-1} ^ {2}) \ le 0 $

That is, when $ n = 2 k + 1 $

From (1) (2), we can see that: $ \{{ x }_{ 2n + 1 }}\}$ monotonically decreasing

Likewise, it can be proved that $ \{{ x }_{ 2n }}\}$ increases monotonically.

Therefore, $ \{{ x }_{ 2n + 1 }\}$ monotonically decreases, $ \ SQRT {2}-1 \ le {x }_{ 2n + 1 }}\ Le \ frac {1} {2 }$, which is known by the monotonic bounded principle: $ \{{ x }_{ 2n + 1 }\}$ convergence

Set $ \ underset {n \ to + \ infty} {\ mathop {\ lim }}\, {x }_{ 2n + 1 }}= L \ in [\ SQRT {2}-1, \ frac {1} {2}] $, by $ {x }_{ 2 K + 3 }=\ frac {1} {2} [1-\ frac {1} {4} {(416 _{ 2 k + 1} ^ {2 })} ^ {2}] $, pairs on both sides $ n \ to + \ infty $

Then $ L = \ frac {1} {2} [1-\ frac {1} {4 }{{ (1-{L} ^ {2 }})} ^ {2}] $, obtain $ L = \ SQRT {2}-1 $

That is, $ \ underset {x \ To \ infty} {\ mathop {\ lim }}\, {x }_{ 2n + 1 }}=\ SQRT {2}-1 = A $

Likewise, it can be proved that $ \ underset {x \ To \ infty} {\ mathop {\ lim }}\, {x }_{ 2n }}=\ SQRT {2}-1 = A $

So $ \ underset {n \ to + \ infty} {\ mathop {\ lim }}\, {x }_{ n }}=\ underset {n \ to + \ infty} {\ mathop {\ lim }}\, {x }_{ 2n }}=\ underset {n \ to + \ infty} {\ mathop {\ lim }}\, {x }_{ 2n + 1 }}= a $

(3) proof: set $ {A }_{ n }}={ {x }_{ n }}- A = {x }_{ n }}- (\ SQRT {2 }-1) $

Therefore

$ \ Underset {n \ to + \ infty} {\ mathop {\ lim }}\, \ left | \ frac {A }_{ n + 1 }}{{ A }_{ n }}\ right | =\ underset {n \ to + \ infty }{\ mathop {\ Lim }}\, \ left | \ frac {x }_{ n + 1 }}- A }{{ x }_{ n }}- A }\ right | =\ underset {n \ to + \ infty} {\ mathop {\ lim }}\, \ left | \ frac {1} {2} (416_{ n} ^ {2 }) -A }{{ x }_{ n }}- a} \ right | =\ underset {n \ to + \ infty }{\ mathop {\ Lim }}\, \ frac {1} {2} \ left | \ frac {416_{ n} ^ {2}-(2 \ SQRT {2}-2 )} {x }_{ n }}- (\ SQRT {2}-1 )} \ right | =\ underset {n \ to + \ infty} {\ mathop {\ lim }}\, \ frac {1} {2} \ left | \ frac {X _ {n} ^ {2}-{(\ SQRT {2}-1 )} ^ {2 }}{{ x }_{ n }}- (\ SQRT {2}-1)} \ right | = A1 $

So $ \ sum \ limits _ {n = 1} ^ {+ \ infty} {({x }_{ n }}}-a) $ absolute convergence

II,

(1) The reason is as follows:

To prove that $ {\ sin} ^ {3 }}\ left | f (x) \ right | $ is consistent and continuous on $ I $, you only need to prove that $ \ left | f (x) \ right | $ is consistent and continuous on $ I $.

Because $ f (x) $ is consistent and continuous on $ I $, for any $ \ varepsilon 0 $, any $ {x }_{ 1 }}, {x }_{ 2 }}\ in I $, $ \ Delta 0 $ exists. When

$ \ Left | {x }_{ 1 }}- {x }_{ 2 }}\ right | \ Delta $, $ \ left | f ({x }_{ 1})-f ({x }_{ 2}) \ right | \ varepsilon $

Therefore, for any $ \ varepsilon 0 $, any $ {x }_{ 1 }}, {x }_{ 2 }}\ in I $, $ \ Delta 0 $ exists. When

$ \ Left | {x }_{ 1 }}- {x }_{ 2 }}\ right | \ Delta $, $ \ left | f ({x }_{ 1}) \ right |-\ left | f ({x }_{ 2 }}) \ right | \ Le \ left | f ({x }_{ 1})-f ({x }_{ 2 }}) \ right | \ varepsilon $

That is, $ \ left | f (x) \ right | $ is consistent and continuous on $ I $.

For any $ \ varepsilon 0 $, any $ {x }_{ 1 }}, {x }_{ 2 }}\ in I $, $ \ Delta 0 $ exists. When

$ \ Left | {x }_{ 1 }}- {x }_{ 2 }}\ right | \ Delta $

$ \ Left | {\ sin} ^ {3 }}\ left | f ({x }_{ 1 }}) \ right |-{\ sin} ^ {3 }}\ left | f ({x }_{ 1 }}) \ right | = \ left | (\ sin \ left | f ({x }_{ 1 }}) \ right |-\ sin \ left | f ({x }_{ 1}) \ right |) ({\ sin} ^ {2 }}\ left | f ({x }_{ 1 }}) \ right | + \ sin \ left | f ({x }_{ 1 }}) \ right | \ sin \ left | f ({x }_{ 2 }}) \ right | + {\ sin} ^ {2 }}\ left | f ({x }_{ 2 }}) \ right | $ \ le 3 \ left | \ sin \ left | f ({x }_{ 1 }}) \ right |-\ sin \ left | f ({x }_{ 1 }}) \ right | \ le 3 \ left | \ sin F ({x }_{ 1 }}) -\ sin F ({x }_{ 2}) \ right | \ le 3 \ left | f ({x }_{ 1 }}) -F ({x }_{ 2}) \ right | $

Therefore, we can see from the consistent convergence of the composite functions: $ {\ sin} ^ {3 }}\ left | f (x) \ right | $ consistent continuity on $ I $

(4) The reason is as follows:

To prove that $ {\ sin} ^ {3} f (x) $ is consistent and continuous on $ I $, you only need to prove $ f (x) $ consistent continuity on $ I $

Because $ \ left | f (x) \ right | $ is consistent and continuous on $ I $, any $ {x }_{ 1 }}, {x }_{ 2 }}\ in I $, $ \ Delta 0 $ exists. When

$ \ Left | {x }_{ 1 }}- {x }_{ 2 }}\ right | \ Delta $, by $ \ left | f ({x }_{ 1}) \ right |-\ left | f ({x }_{ 2 }}) \ right | \ frac {\ varepsilon} {2} $

1: If $ F ({x }_{ 1}), F ({x }_{ 2}) $ is the same number, $ \ left | f ({x }_{ 1})-f ({x }_{ 2 }}) \ right | \ frac {\ varepsilon} {2} \ varepsilon $

2: If $ F ({x }_{ 1}) and F ({x }_{ 2}) $ are of the same number) $ continuous, $ y $ between $ {x }_{ 1 }}, {x }_{ 2 }}$ makes $ f (y) = 0 $

So $ \ left | f ({x }_{ 1})-f ({x }_{ 2 }}) \ right | \ Le \ left | f ({x }_{ 1}) \ right | + \ left | f ({x }_{ 2 }}) \ right | = \ left | f ({x }_{ 1}) \ right |-\ left | f (y) \ right | + \ left | f ({x }_{ 2}) \ right |-\ left | f (y) \ right | \ varepsilon $

From 1, 2, we can see that $ f (x) $ is consistent and continuous on $ I $.

Based on the consistent continuity of the composite function, we can see that $ {\ sin} ^ {3} f (x) $ is consistent and continuous on $ I $.

Iii. proof:

Adequacy: counterproof method: Assume that $ f (x) \ Le \ frac {F (B)-f (a)} is available for any $ x \ In (a, B) $ )} {B-a} $

Make $ g (x) = f (x)-\ frac {F (B)-f (a)} {B-a} (X-a) $

When $ x \ In (a, B) $, $ g (x) = f (x)-\ frac {F (B)-f ()} {B-a} \ le 0 $

Therefore, $ g (x) $ decreases monotonically on $ [a, B] $.

While $ G (A) = g (B) = f (a) $

So when $ x \ in [a, B] $, $ g (x) = f (a) $

So $ f (x) = \ frac {F (B)-f (a)} {B-a} (X-A) + f (a) $ conflict

Therefore, $ \ Xi \ In (a, B) $ must exist, so that $ F (\ xi) \ frac {F (B)-f ()} {B-a} $

Necessity:

Make $ g (x) = f (x)-\ frac {F (B)-f (a)} {B-a} (X-a) $

Then $ G (A) = g (B) = f (a) $

Proof Method:

1: If $ f (x) $ is a constant function, $ g (x) = f (x)-\ frac {F (B)-f ()} {B-a }=- \ frac {F (B)-f (a)} {B-a}, X \ in [a, B] $

This corresponds to the presence of $ \ Xi \ In (a, B) $, making $ F (\ xi) \ frac {F (B)-f ()} {B-a} $ conflict

2: If $ f (x) $ is a linear function, we can see that $ g (x) = f (x)-\ frac {F (B)-f ()} {B-a} $ is a constant.

Because $ \ Xi \ In (a, B) $ exists, $ F (\ xi) \ frac {F (B)-f ()} {B-a} $ Yes, $ g (x) 0 $

Therefore, $ g (x) $ increases monotonically at $ [a, B] $.

While $ G (A) = g (B) = f (a) $ conflict

As shown in the preceding figure, $ f (x) $ is not a regular or linear function.

IV,

(1) proof: Set $ f \ left (X, Y \ right) ={{ x} ^ {2 }}+ y-\ cos \ left (xy \ right) $,

Obviously, $ f \ left (0, 1 \ right) = 0 $,

$ {F }_{ y }}\ left (X, Y \ right) = 1 + x \ sin \ left (xy \ right) $,

$ {F }_{ y }}\ left (0, 1 \ right) = 1 \ Ne 0 $. The implicit function has a theorem,

$ \ Delta 0 $ exists, and a continuous and micro function on $ \ left [-\ delta, \ Delta \ right] $ Y = Y \ left (x \ right) $ exists, $ Y \ left (0 \ right) = 1 $,

$ F \ left (X, Y \ left (x \ right) \ equiv 0 $, $ x \ In U (0) $

(3) proof: (1:

$ {F }_{ x }}\ left (X, Y \ right) = 2x + Y \ sin \ left (xy \ right) $,

$ {Y} \ left (x \ right) =-\ frac {f }_{ x }}\ left (X, Y \ right )} {f }_{ y }}\ left (X, Y \ right) }=- \ frac {2x + Y \ sin \ left (xy \ right )} {1 + x \ sin \ left (xy \ right) }$,

When $ 0x \ Delta $, ($ \ Delta 0 $ is small enough), $ {y} \ left (x \ right) 0 $, $ Y \ left (x \ right) $ strictly monotonically decreases on $ \ left [0, \ Delta \ right] $;

$-\ Delta x0 $, $ {y} \ left (x \ right) 0 $, $ Y \ left (x \ right) $ strictly monotonically incrementing on $ \ left [-\ delta, 0 \ right] $,

V,

(1) solution: (1) definition of partial derivative:

$ {F }_{ x }}( 0, 0) = \ underset {\ delta x \ to 0 }{\ mathop {\ lim }}\, \ frac {f (\ delta X, 0)-f (0, 0 )} {\ delta x }=\ underset {\ delta x \ to 0 }{\ mathop {\ lim }}\, \ delta x \ cos \ frac {1 }{\ left | \ delta x \ right |}= 0 $

$ {F }_{ y }}( 0, 0) = \ underset {\ Delta Y \ to 0 }{\ mathop {\ lim }}\, \ frac {f (0, \ Delta y)-f (0, 0 )} {\ Delta y }=\ underset {\ Delta Y \ to 0 }{\ mathop {\ lim }}\, \ Delta Y \ cos \ frac {1 }{\ left | \ Delta Y \ right |}= 0 \ $

(2) When $ (x, y) \ NE (0, 0) $,

$ {F }_{ x} (x, y) = 2x \ cos \ frac {1} {\ SQRT {x} ^ {2 }}+ {y} ^ {2 }}}+ \ frac {x} {\ SQRT {x} ^ {2} + {y} ^ {2 }}}\ sin \ frac {1} {\ SQRT {x} ^ {2 }}+ {y} ^ {2 }}}$

$ {F }_{ y} (x, y) = 2y \ cos \ frac {1} {\ SQRT {x} ^ {2 }}+ {y} ^ {2 }}+ \ frac {y} {\ SQRT {x} ^ {2} + {y} ^ {2 }}}\ sin \ frac {1} {\ SQRT {x} ^ {2 }}+ {y} ^ {2 }}}$

So $ {f_x} (x, y) =\left \{\ begin {array} {ll} 2x \ cos \ frac {1 }{{{ \ SQRT {{ x ^ 2 }+ {y ^ 2 }}}} + \ frac {x} {\ SQRT {x ^ 2} + {y ^ 2 }}}\ sin \ frac {1 }{{ \ SQRT {x ^ 2 }+ {y ^ 2 }}}}, \ hbox {$ {x ^ 2} + {y ^ 2} \ Ne 0 $} \ 0, \ hbox {$ {x ^ 2} + {y ^ 2} = 0 $ .} \ end {array} \ right. $
$ {F_y} (x, y) =\left \{\ begin {array} {ll} 2y \ cos \ frac {1 }{{{ \ SQRT {{ x ^ 2 }+ {y ^ 2 }}}} + \ frac {y} {\ SQRT {x ^ 2} + {y ^ 2 }}}\ sin \ frac {1 }{{ \ SQRT {x ^ 2 }+ {y ^ 2 }}}},, \ hbox {$ {x ^ 2} + {y ^ 2} \ Ne 0 $} \ 0, \ hbox {$ {x ^ 2} + {y ^ 2} = 0 $ .} \ end {array} \ right. $

(2) set $ Y = kx $, so $ \ underset {x \ to 0} {\ mathop {\ lim }}\, \ frac {x} {\ SQRT {x} ^ {2 }}+ {y} ^ {2 }}=\ frac {1} {\ SQRT {1 + {k} ^ {2 }}$ related to $ K $

Therefore, $ \ underset {x \ to 0 }{\ mathop {\ lim }}\, {f }_{ x }}( X, 0) $ does not exist, therefore, $ {f }_{ x} (x, y) $ is not continuous at (0, 0.

Similarly, $ {f }_{ y} (x, y) $ is not continuous at (0, 0.

(3) If $ u = f (x, y) $ is set

$ \ Deltau-du = [F (\ delta X, \ Delta y)-f ()]-[{f }_{ x) \ delta x + {f }_{ y} (0, 0) \ deltay] = (\ Delta {x} ^ {2 }}+ \ Delta {y} ^ {2 }}) \ cos \ frac {1} {\ SQRT {\ Delta {x} ^ {2 }}+ \ Delta {y} ^ {2 }}$

Because $ \ underset {\ delta x \ to 0, \ Delta Y \ to0} {\ mathop {\ lim }}\, \ frac {\ Delta U-du} {\ SQRT {\ Delta {x} ^ {2 }}+ \ Delta {y} ^ {2 }}= \ underset {\ delta x \ to 0, \ Delta Y \ to 0 }{\ mathop {\ Lim }}\, \ SQRT {\ Delta {x} ^ {2 }}+ \ Delta {y} ^ {2 }}\ cos \ frac {1} {\ SQRT {\ Delta {x} ^ {2 }}+ \ Delta {y} ^ {2 }}= 0 $

Therefore, $ f (x, y) $ can be smaller than (0, 0.

6. Solution: Because $ Y = x + y, y (0) = 1 $

Obtain $ y =-+ 2 {e} ^ {x} $ by Constant Variation

Note $ {A }_{ n }}= y (\ frac {1} {n }) -1-\ frac {1} {n} = 2 ({e} ^ {\ frac {1} {n}-1-\ frac {1} {n }) $

By $ \ underset {n \ to + \ infty} {\ mathop {\ lim }}\, \ SQRT [N] {A }_{ n }}={ e} ^ {\ underset {n \ to + \ infty} {\ mathop {\ lim} }\, \ frac {\ ln {A }_{ n }}{ n }}={{ e} ^ {\ underset {n \ To ++ \ infty} {\ mathop {\ lim }}\, \ frac {\ ln2 ({e} ^ {\ frac {1} {n }}- 1-\ frac {1} {n })} {n }}\ overset {n = \ frac {1} {x }}{\ mathop {= }}\, {e} ^ {\ underset {x \ to + {0} ^ {+ }}{\ mathop {\ lim }}\, \ frac {\ ln 2 ({e} ^ {x}-32a )} {\ frac {1} {x }}={ {e} ^ {-\ underset {x \ to + {0} ^ {+ }}{\ mathop {\ lim }}\, \ frac {x} ^ {2} ({e} ^ {x}-1 )} {e} ^ {x}-3o}}={ {e} ^ {-\ underset {x \ to + {0} ^ {+ }}} {\ mathop {\ lim }}\, \ frac {x} ^ {2} [x + O (x)]} {\ frac {x} ^ {2 }}{ 2} + O ({x} ^ {2}) }}= 1 $

So the convergence radius of the Power Series $ r = 1 $

Because $ x = 1 $, $ Y (\ frac {1} {n }) -1-\ frac {1} {n} = 2 ({e} ^ {\ frac {1} {n}-1-\ frac {1} {n }) = \ sum \ limits _ {n = 1} ^ {+ \ infty} {\ frac {2} {n} ^ {2 }}+} \ sum \ limits _ {n = 1} ^ {+ \ infty} {o (\ frac {2 }{{ n} ^ {2 }}}}) $ convergence

When $ x =-1 $, we can see that the number of series converges according to the lebreitz discriminant method.

So the Convergence Domain of This idempotent series is $ [-] $

VII,

(1) proof: make $ U ={{ t} ^ {2 }}\ rightarrowt =\sqrt {u }, dt = \ frac {1} {2 \ SQRT {u} du $, so $ \ int _ {x} ^ {x + c} {\ sin {t} ^ {2 }}dt = \ frac {1} {2} \ int _ {x} ^ {2 }}^{{ (x + C )} ^ {2 }}{\ frac {\ Sinu }{\ SQRT {u }}du $

Functions $ \ frac {1} {\ SQRT {u }}$ in $ [{x} ^ {2}, {(x + C )} ^ {2}] $ decrease on and $ \ frac {1} {\ SQRT {u }}\ GE 0 $, which is known by the value theorem in the second part of the integral:

$ \ Xi \ in [{x} ^ {2}, {(x + C)} ^ {2}] $ exists, making

$ \ Int _ {x} ^ {x + c} {\ sin {t} ^ {2 }}dt = \ frac {1} {2} \ int _{ {x} ^ {2 }}^{{ (x + C )} ^ {2 }}{\ frac {\ Sinu} {\ SQRT {u }}du =\ frac {1} {2x} \ int _ {{ x} ^ {2 }}^ {\ Xi} {\ sin UDU = \ frac {1} {2x} (\ cos {x} ^ {2}-\ cos \ XI )} $

Therefore, $ \ left | \ int _ {x} ^ {x + c} {\ sin {t} ^ {2} DT \ right | \ Le \ frac {1} {x} $

(2) Yes, for the following reasons:

Proof:

Make $ f (x) = \ int _ {x} ^ {x + c} {\ sin {t} ^ {2 }}dt = \ frac {1} {2} \ int _{ {x} ^ {2 }}^{{ (x + C )} ^ {2 }}{\ frac {\ Sinu} {\ SQRT {u }}du =-\ frac {1} {2} \ frac {\ cosu }{\ SQRT {u }}|_{{ x} ^ {2 }}{{ (x + C )} ^ {2 }}- \ frac {1} {4} \ int _ {x} ^ {2 }}{{ (x + C )} ^ {2 }}{\ frac {\ Sinu }{{ u} ^ {\ frac {3} {2 }}} du $

$ =\ Frac {\ cos {x} ^ {2 }}{ 2x}-\ frac {\ cos {(x + C )} ^ {2 }}{ 2 (x + C )} -\ frac {1} {4} \ int _ {x} ^ {2 }}^{{ (x + C )} ^ {2 }}{\ frac {\ Sinu }{{ u} ^ {\ frac {3} {2 }}} du $

$ {U }_{ 0 }}\ in [{x} ^ {2 },{ {(x + C) }^{ 2}] $, make $ \ left | \ frac {\ cos {u }_{ 0 }}{ U _ {0} ^ {\ frac {3} {2 }}\ right | \ frac {1 }{{ U }^{\ frac {3 }{ 2 }}}$, therefore, when $ x0 $

$ \ Left | f (x) \ right | \ Le \ left | \ frac {\ cos {x} ^ {2 }}{ 2x} \ right | + \ left | \ frac {\ cos {{ (x + C )} ^ {2 }}{ 2 (x + C )} \ right | + \ frac {1} {4} \ int _ {x} ^ {2 }}{{ {(x + C )} ^ {2 }}{\ left | \ frac {\ cos U }{{ u} ^ {\ frac {3} {2 }}\ right |} du \ frac {1} {2x} + \ frac {1} {2 (x + C )} + \ frac {1} {4} \ int _ {x} ^ {2 }}^{{ (x + C )} ^ {2 }}{\ frac {1 }{{ u} ^ {\ frac {3} {2 }}} du $

$ =\ Frac {1} {2x} + \ frac {1} {2 (x + C )} + \ frac {1} {4} (-2 {u} ^ {-\ frac {1} {2 }}}) | _ {x} ^ {2 }}^ {(x + C)} ^ {2 }}=\ frac {1} {x} $

8. Proof: For any point on $ {r} ^ {2} $ ({x }_{ 0 }}, {y }_{ 0}) $, make $ {L }_{ 1 }}=\{ x |{{ (X-{x }_{ 0 }})} ^ {2 }={{ R} ^ {2 }}\}$. The direction is counter-clockwise.

According to the Green formula:

$ \ Int _ {L} {PDX + qdy =}\ int _ {L + {L }_{ 1 }}{ PDX + qdy = \ iint _ {d} {[\ frac {\ partialq} {\ partial x }}- \ frac {\ partial p} {\ partial y}] dxdy = [\ frac {\ partial Q }{ \ partialx}-\ frac {\ partial p} {\ partial y}] {{|}_ {M }}\ PI {{ R }^ {2 }}= 0 $

$ D $ is a graph surrounded by $ L + {L }_{ 1 }}$, $ m \ In d $

On the other hand, we can see from the mean point theorem:

$ \ Int _ {L} {PDX + qdy =}-\ int _ {L }_{ 1 }}{ p (x, {y }_{ 0 }}) dx =-P ({x }_{ 1 }},{ y }_{ 0 }}) \ cdot2r $

$ ({X }_{ 1 }},{ y }_{ 0 }}) \ in {L }_{ 1 }}$

Compare the two statements:

$ [\ Frac {\ partialq} {\ partial x}-\ frac {\ partial p} {\ partial y}] {{|}_{ M }}\ PI {{ r} ^ {2 }}=-P ({x }_{ 1 }}, {y }_{ 0 }}) \ cdot 2R \ rightarrow [\ frac {\ partialq }{\ partial x}-\ frac {\ partial P }{\ partial y}] {{|}_{ m }} \ frac {\ PIR} {2} =-P ({x }_{ 1 }}, {y }_{ 0}) $

$ R \ to 0 $: $ P ({x }_{ 0 },{ y }_{ 0 }}) = 0 $, from the arbitrary nature of $ ({x }_{ 0 }}, {y }_{ 0}) $, $ p (x, y) = 0 $

As a result, $ [\ frac {\ partial Q} {\ partialx}-\ frac {\ partial p} {\ partial y}] {{|}_{ m} $, make $ r \ to 0 $ know $ [\ frac {\ partial Q }{\ partial x}-\ frac {\ partiphosphatase }{\ partial y}] {{| }_ {({x }_{ 0 }}, {y }_{ 0 }}) }}= 0 $, from $ ({x }_{ 0 }}, {y }_{ 0 }}) $ arbitrary, $ \ frac {\ partial Q} {\ partial x} = 0 $

 

Answers to questions about 2012 mathematics analysis postgraduate entrance exams of Huazhong Normal University

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.