Application of Abelian distribution summation method (Iv.)

Source: Internet
Author: User
Tags cos

Partial summation method and integral mean value theorem

42. (Division integral method) Stite (Riemman-stieltjes) integral $\int_{a}^{b}\alpha (x) DF (x) $ present, then $\int_{a}^{b}f (x) d\alpha (x) $ Also exists and has a partial integral formula
$$\int_{a}^{b}f (x) d\alpha (x) =[f (x) \alpha (x)]\big|_{a}^{b}-\int_{a}^{b}\alpha (x) DF (x) $$
Proof: The partial integral formula in the general Riemman integral
$$\int_{a}^{b}f (x) d\alpha (x) =[f (x) \alpha (x)]\big|_{a}^{b}-\int_{a}^{b}\alpha (x) DF (x) $$
is the derivative of the product
$ $d (f\alpha) =fd\alpha+\alpha df$$
The corresponding. It embodies the contradiction between differential and integral. However, $f,\alpha$ is required to be a micro-function. In $r-s$ integral, this condition is too strong. $\alpha (x) $ actually does not have to be a micro function or even a continuous function. Using
$R the definition of-s$ integral, the division integral is viewed with the contradiction of discrete and continuous.
Make Division
$$\pi:a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$$
and $\|\pi\|=\max | | \delta X_{i}|,\delta X_{i}=x_{i}-x_{i-1},x_{i-1}\leq \xi_{i}\leq x_{i}$.
Application of Partial summation method
\begin{align*}
\sigma (F,\PI,\XI) &=\sum_{k=1}^{n}f (\xi_{k}) [\alpha (X_{k})-\alpha (x_{k-1})]\\
&=\sum_{k=1}^{n}f (\xi_{k}) \alpha (X_{k})-\sum_{k=1}^{n}f (\xi_{k}) \alpha (x_{k-1}) \ \
&=\sum_{k=1}^{n}f (\xi_{k}) \alpha (X_{k})-\sum_{k=0}^{n-1}f (\xi_{k+1}) \alpha (x_{k}) \ \
&=f (b) \alpha (b)-F (a) \alpha (a) +[f (\xi_{n})-F (X_{n})]\alpha (X_{n}) +[f (x_{0})-F (\xi_{1})]\alpha (x_{0}) \ \
&-\sum_{1}^{n-1}[f (\xi_{k+1})-F (\xi_{k})]\alpha (x_{k}) \ \
&=f (b) \alpha (b)-F (a) \alpha (a) +[f (\xi_{n})-F (X_{n})]\alpha (X_{n}) +[f (x_{0})-F (\xi_{1})]\alpha (x_{0})-\sigma (\ALPHA,\PI ', x)
\end{align*}
Sequence
$$\pi ': A=\xi_{1}<\xi_{2}<\cdots<\xi_{n+1}=b,\xi_{k}\leq x_{k}\leq\xi_{k+1}$$
and $\|\pi ' \|\leq 2\|\pi\|$, is a division of integral $\int_{a}^{b}\alpha df$.
$$\lim_{\|\pi\|\to 0}\sigma (F,\PI,\XI) =f (x) \alpha (x) \big|_{a}^{b}-\lim_{\|\pi ' \|\to 0}\sigma (\ALPHA,\PI ', x) $$
That
$$\int_{a}^{b}f (x) d\alpha (x) =[f (x) \alpha (x)]\big|_{a}^{b}-\int_{a}^{b}\alpha (x) DF (x) $$
Note: If $f$ is a continuous function and $\alpha$ is a bounded variation function, both $\int_{a}^{b}fd\alpha$ and $\int_{a}^{b}\alpha df$ exist.
43. (First integral mean value theorem) set $\alpha (x) $ for a monotone function and $f (x) $ for real value continuous function with median formula
$$\int_{a}^{b}f (x) d\alpha (x) =f (\XI) [\alpha (b)-\alpha (a)],\,\, (A\leq \xi\leq b) $$
Proof: Set
$ $m (f) =\min_{x\in[a,b]} f (x); M (f) =\max_{x\in[a,b]}f (x) $$
Then there are
$ $m (f) \leq \frac{1}{\alpha (b)-\alpha (a)}\int_{a}^{b}f (x) d\alpha (x) \leq m (f) $$
The existence of $\xi\in is known by the mean value theorem of the real continuous function [a,b]$, which makes
$ $f (\xi) =\frac{1}{\alpha (b)-\alpha (a)}\int_{a}^{b}f (x) d\alpha (x) $$
44. Set $f (x) $ continuous and $\PSI (x) $ for Lebesgue (h.lebesge1875-1941) integrable function on $[a,b]$ (Jane writes $\psi \in l$), and set $\psi (x) \geq 0$, then there must be $\xi,a\leq \xi\ Leq b$. Make
$$\int_{a}^{b}f (x) \psi (x) dx=f (\XI) \int_{a}^{b}\psi (x) dx$$
Proof: Set
$ $m (f) =\min_{x\in[a,b]} f (x); M (f) =\max_{x\in[a,b]}f (x) $$
Then there are
$ $m (f) \leq \frac{1}{\int_{a}^{b}\psi (x) dx}\int_{a}^{b}f (x) \psi (x) Dx\leq m (f) $$
The existence of $\xi\in is known by the mean value theorem of the real continuous function [a,b]$, which makes
$$\int_{a}^{b}f (x) \psi (x) dx=f (\XI) \int_{a}^{b}\psi (x) dx$$
45. (Growing inequality) is set on $[a,b]$ $f (x) $ is a continuous function and $\alpha (x) $ is a bounded variation function, then
$$\left|\int_{a}^{b}f (x) Dx\right|\leq M (f) \cdot \bigvee_{a}^{b} (\alpha) $$
Here $m (f) =\max_{a\leq X\leq b}f (x) $, while $\bigvee\limits_{a}^{b} (\alpha) $ is the total variation of $\alpha$ on $[a,b]$.
Prove:
\begin{align*}
\left|\int_{a}^{b}f (x) Dx\right|&\leq \lim_{\|\pi\|\to 0}\sum_{k=1}^{n}\left|f (\xi_{k}) \right|\cdot |\alpha (x_ {k}) -\alpha (x_{k-1}) |\\
&\leq M (f) \cdot \lim_{\|\pi\|\to 0}\sum_{k=1}^{n}|\alpha (X_{k})-\alpha (x_{k-1}) |\\
&\leq M (f) \cdot \bigvee_{a}^{b} (\alpha)
\end{align*}
46. (The second integral median theorem) is set on $[a,b]$ $\alpha (x) $ for a real value continuous function and $f (x) $ for a monotone function must have $\xi,a\leq \xi\leq b$ make
$$\int_{a}^{b}f (x) d\alpha (x) =f (a) \int_{a}^{\xi}d\alpha (x) +f (b) \int_{\xi}^{b}d\alpha (x) $$
Proof: The use of partial integrals and the first median theorem (involving end-point values and intermediate values)
\begin{align*}
\int_{a}^{b}f (x) d\alpha (x) &=f (x) \alpha (x) \big|_{a}^{b}-\int_{a}^{b}\alpha (x) df (x) \ \
&=f (b) \alpha (b)-F (a) \alpha (a)-\alpha (\XI) \int_{a}^{b}df (x) \
&=f (b) [\alpha (b)-\alpha (\XI)]+f (a) [\alpha (\xi)-\alpha (a)]\\
&=f (a) \int_{a}^{\xi}d\alpha (x) +f (b) \int_{\xi}^{b}d\alpha (x)
\end{align*}
(Bonnet) Set $\varphi (x) \in l$, also set $f (x) $ monotonic. Then there must be $\xi,a\leq \xi\leq b$
$$\int_{a}^{b}f (x) \varphi (x) dx=f (a) \int_{a}^{\xi}\varphi (x) dx+f (b) \int_{\xi}^{b}\varphi (x) dx$$
Proof: This proposition is the inference of Proposition 46.
Set $\alpha (x) =\int_{a}^{x}\varphi (t) dt$.
(Bonnet) set on $[a,b]$ $\alpha (x) $ is a real continuous function and $f (x) \geq 0$ and $f (x) \uparrow$, there must be $\xi,a\leq \xi\leq b$, making
$$\int_{a}^{b}f (x) d\alpha (x) =f (b) \int_{\xi}^{b}d\alpha (x) $$
And if $f (x) \leq 0$ and $f (x) \downarrow$, there must be $\xi,a\leq \xi\leq b$, making
$$\int_{a}^{b}f (x) d\alpha (x) =f (a) \int_{a}^{\xi}d\alpha (x) $$
Proof: Assume $f (x) \leq 0$ and $f (x) \downarrow$
$$\sigma (F,\PI,\XI) =\sum_{k=1}^{n}f (\xi_{k}) [\alpha (X_{k})-\alpha (x_{k-1})]$$
About $f (\xi_{k}) $
$ $f (a) =f (\xi_{1}) \geq f (\xi_{2}) \geq \cdots \geq f (\xi_{n}) \geq 0$$
and
$$\inf_{a\leq X\leq B}\int_{a}^{x}d\alpha (t) \leq \sum_{k=1}^{n}[\alpha (X_{k})-\alpha (x_{k-1})]\leq \sup_{a\leq x\ Leq B}\int_{a}^{x}d\alpha (t) $$
By the Abel lemma that Proposition 4 has
$ $f (a) \inf_{a\leq X\leq B}\int_{a}^{x}d\alpha (t) \leq\sum_{k=1}^{n}f (\xi_{k}) [\alpha (X_{k})-\alpha (x_{k-1})]\leq F (a) \sup_{a\leq X\leq B}\int_{a}^{x}d\alpha (t) $$
Take limit $\|\pi\|\to 0$
$ $f (a) \inf_{a\leq X\leq B}\int_{a}^{x}d\alpha (t) \leq\int_{a}^{b}f (x) d\alpha (x) \leq F (a) \sup_{a\leq X\leq b}\int_{a} ^{x}d\alpha (t) $$
Since $\int_{a}^{x}d\alpha (t) =\alpha (x)-\alpha (a) $ is a continuous function, the media theorem of the continuous function is known to exist $\xi,a\leq \xi\leq b$
$$\int_{a}^{b}f (x) d\alpha (x) =f (a) \int_{a}^{\xi}d\alpha (t) $$
If $\alpha (x) =\int_{a}^{x}\varphi (t) dt$, the conclusion is
$$\int_{a}^{b}f (x) \varphi (x) dx=f (a) \int_{a}^{\xi}\varphi (x) dx$$
Similar proof another type.
49. Try to derive proposition 46 from Proposition 48.
Proof: Set $f (x) \downarrow$, Proposition 48 requires $f (x) $ non-negative, Proposition 46 no this requirement is only required for monotonicity. Therefore $f (x)-F (b) \geq 0,\, (A\leq X\leq b) $.
$$\int_{a}^{b}[f (x)-F (b)]d\alpha (x) =[f (a)-F (b)]\int_{a}^{\xi}d\alpha (x) =f (a) \int_{a}^{\xi}d\alpha+f (b) \int_{\ Xi}^{b}d\alpha-f (b) \int_{a}^{b}d\alpha$$
Both sides eliminate $f (b) \int_{a}^{b}d\alpha$ is the Proposition 46.
50. Set on $[a,b]$ $\alpha (x) $ is a bounded variation function and $f (x) $ is a nonnegative continuous function. If $f (x) \uparrow$, then
$$\int_{a}^{b}f (x) d\alpha (x) =af (b) $$
Here
$$\inf_{a\leq X\leq b}\int_{x}^{b}d\alpha (x) \leq a\leq \sup_{a\leq x\leq b}\int_{x}^{b}d\alpha (x) $$
If $f (x) \downarrow$, then
$$\int_{a}^{b}f (x) d\alpha (x) =BF (a) $$
Here
$$\inf_{a\leq X\leq b}\int_{a}^{x}d\alpha (x) \leq b\leq \sup_{a\leq x\leq b}\int_{a}^{x}d\alpha (x) $$
Proof: If $f (x) \geq 0$ and $f (x) \uparrow$
$ $f (b) \inf_{a\leq X\leq B}\int_{x}^{b}d\alpha (t) \leq \sum_{k=1}^{n}f (\xi_{k}) [\alpha (X_{k})-\alpha (x_{k-1})]\leq F (b) \sup_{a\leq X\leq B}\int_{x}^{b}d\alpha (t) $$
Take limit $\|\pi\|\to 0$
$ $f (b) \inf_{a\leq X\leq B}\int_{x}^{b}d\alpha (t) \leq\int_{a}^{b}f (x) d\alpha (x) \leq f (b) \sup_{a\leq X\leq b}\int_{x} ^{b}d\alpha (t) $$
So
$$\inf_{a\leq X\leq B}\int_{x}^{b}d\alpha (t) \leq a=\frac{1}{f (b)}\int_{a}^{b}fd\alpha\leq \sup_{a\leq X\leq b}\int_{ X}^{b}d\alpha (t) $$
The same can be $f (x) \downarrow$
$$\inf_{a\leq X\leq B}\int_{a}^{x}d\alpha (t) \leq b=\frac{1}{f (a)}\int_{a}^{b}fd\alpha\leq \sup_{a\leq X\leq b}\int_{ A}^{x}d\alpha (t) $$
51. (Chen Jiangong) set $\alpha>0,a>0,0\leq a<b$. Test Certificate
$$\left|\int_{a}^{b}\cos\left (nt-\frac{a}{t^{\alpha}}\right) dt\right|<\frac{2}{n}$$
$$\left|\int_{a}^{b}\sin\left (nt-\frac{a}{t^{\alpha}}\right) dt\right|<\frac{2}{n}$$
Proof: Make variable substitution
$$\omega=t-\frac{a}{nt^{\alpha}}$$
The
$$\frac{d\omega}{dt}=1+\frac{a\alpha}{nt^{\alpha+1}}>0,\, T\in [a,b]$$
$$\frac{d^{2} (t)}{d\omega^{2}}=\left (1+\frac{a\alpha}{nt^{\alpha+1}}\right) ^{-2}\frac{\alpha (\alpha+1) A}{nt^{\ alpha+2}}\frac{dt}{d\omega}>0$$
Then the second mean value theorem of integrals
\begin{align*}
\left|\int_{a}^{b}\cos\left (Nt-\frac{a}{t^{\alpha}}\right) Dt\right|&=\left|\int_{\omega (a)}^{\omega (b)}\ cos (n\omega) \frac{dt}{d\omega}d\omega\right|\\
&=\left (1+\frac{a\alpha}{nb^{\alpha+1}}\right) ^{-1}\left|\int_{\xi}^{b}\cos (N\omega) d\omega\right|\\
&\leq \left|\frac{\sin (n\xi)-\sin (N\omega (b))}{n}\right|\\
&\leq \frac{2}{n}
\end{align*}
The proof of the second inequality is exactly the same.

Application of Abelian distribution summation method (Iv.)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.