Big integer addition, subtraction, multiplication, division

Source: Internet
Author: User

Big integer addition, subtraction, multiplication, division

# Include <stdio. h> # define maxint 1000int compare (int A [], int B []); int bigplus (int A [], int B [], int C []); int bigsub (int A [], int B [], int C []); int bigmult (int A [], unsigned int B, int C []); int bigmult2 (int A [], int B [], int C []); int bigdiv (int A [], unsigned int B, int C [], int * D); int bigdiv2 (int A [], int B [], int C [], int d []); int main (INT argc, char * argv []) {// A [0], B [0] indicates the number of digits, and a [1], B [1] indicates the bit, similarly, int A [maxint] = {, 1}; // multiplier or divisor int B [maxint] = {, 7 }; // multiplier or divisor int C [maxint], d [maxint]; // C [] storage provider, d [] storage remainder int DIV = 1234; // small multiplier or small divisor int K = 0; int * res = & K; // small remainder integer pointer int I = 0; Int J; for (j = A [0]; j> = 1; j --) printf ("% d", a [J]); // number a printf ("\ n"); For (j = B [0]; j> = 1; j --) // number B printf ("% d ", B [J]); printf ("\ n"); bigplus (A, B, C); bigsub (A, B, C); bigmult (A, Div, c); bigmult2 (A, B, C); bigdiv (A, Div, C, Res); bigdiv 2 (a, B, c, d); getchar (); Return 0;} int compare (int A [], int B []) // compare the size of a large INTEGER {int I; if (a [0]> B [0]) return 1; // compare, the number of digits of B determines the returned value else if (a [0] <B [0]) Return-1; comparison of else // when the number of digits is equal {I = A [0]; while (A [I] = B [I]) // compare I by bit --; if (I = 0) return 0; else if (a [I]> B [I]) return 1; else return-1 ;}} int bigplus (int A [], int B [], int C []) // large integer addition {int I, Len; Len = (a [0]> B [0]? A [0]: B [0]); // A [0] B [0] saves the array length. Len is a longer for (I = 0; I <maxint; I ++) // clear the array 0 C [I] = 0; for (I = 1; I <= Len; I ++) // calculate the value of each bit {C [I] + = (a [I] + B [I]); // printf ("% d, % d, % d \ n ", a [I], B [I], C [I]); If (C [I]> = 10) {c [I]-= 10; // for a single position greater than 10, c [I + 1] ++; // Add 1} If (C [I + 1]> 0) Len ++; C [0] = Len; // C [0] Save the actual length of the result array printf ("Big integers add:"); for (I = Len; I> = 1; I --) printf ("% d", C [I]); // print the result printf ("\ n"); Return 0;} int bigsub (int A [], int B [], Int C []) // subtraction of large integers {int I, Len; Len = (a [0]> B [0]? A [0]: B [0]); // A [0] saves the length of the number. Len is a longer for (I = 0; I <maxint; I ++) // clear the array 0 C [I] = 0; If (compare (a, B) = 0) // compare, B size {printf ("Result: 0"); Return 0;} else if (compare (a, B)> 0) for (I = 1; I <= Len; I ++) // calculate the value of each bit {C [I] + = (a [I]-B [I]); If (C [I] <0) {c [I] + = 10; // Add 10 C [I + 1] In the original position smaller than 0 --; // minus 1} else for (I = 1; I <= Len; I ++) // calculate the value of each bit {C [I] + = (B [I]-A [I]); if (C [I] <0) {C [I] + = 10; // Add 10 C [I + 1] less than 0 in situ --; // high minus 1} while (LEN> 1 & C [Len] = 0) // remove the high zero Len --; C [0] = Len; printf ("Big integers sub ="); if (a [0] <B [0]) printf ("-"); for (I = Len; I> = 1; I --) // print the result printf ("% d", C [I]); printf ("\ n"); Return 0;} int bigmult (int A [], unsigned int B, int C []) // High Precision multiplied by low precision {int Len, I; for (I = 0; I <maxint; I ++) // array clear 0 C [I] = 0; Len = A [0]; for (I = 1; I <= Len; I ++) // calculate every bit {C [I] + = A [I] * B; C [I + 1] + = C [I]/10; c [I] % = 10;} while (C [++ Len]> = 10) // handle high {C [Len + 1] = C [Len]/10; c [Len] % = 10;} If (C [Len] = 0) Len --; // process printf ("Big integrs multi small integer: "); for (I = Len; I> = 1; I --) printf (" % d ", C [I]); printf (" \ n ");} int bigmult2 (int A [], int B [], int C []) // High Precision multiplied by High Precision {int I, j, Len; for (I = 0; I <maxint; I ++) // clear array 0 C [I] = 0; for (I = 1; I <= A [0]; I ++) // multiplier loop for (j = 1; j <= B [0]; j ++) // multiplier loop {C [I + J-1] + = A [I] * B [J]; // accumulate every bit of computation C [I + J] + = C [I + J-1]/10; // accumulate each result to a high C [I + J-1] % = 10; // calculate each bit} Len = A [0] + B [0]; // get the maximum length while (LEN> 1 & C [Len] = 0) // remove the high value 0 Len --; C [0] = Len; printf ("Big integers multi:"); for (I = Len; I> = 1; I --) // print the result printf ("% d ", c [I]); printf ("\ n");} int bigdiv (int A [], unsigned int B, int C [], int * D) // High Precision divided by low precision {// A [] is the multiplier, B is the divisor, C [] is the result, D is the remainder int I, Len; Len = A [0]; // Len is the array length of a [0] for (I = Len; I> = 1; I --) {(* d) = 10 * (* D) + A [I]; // calculate the remainder of each step C [I] = (* D)/B; // calculate the result of each step (* d) = (* D) % B; // modulus remainder} while (LEN> 1 & C [Len] = 0) Len --; // go to the high position 0 printf ("Big integer Div small integer:"); for (I = Len; I> = 1; I --) // print the result printf ("% d", C [I]); printf ("\ tarithmetic compliment: % d", * D ); printf ("\ n");} int bigdiv2 (int A [], int B [], int C [], int d []) // High Precision divided by High Precision {int I, j, Len; If (compare (a, B) <0) // directly print the result {printf ("result: 0 "); printf (" arithmetic compliment: "); for (I = A [0]; I> = 1; I --) printf (" % d ", A [I]); printf ("\ n"); Return-1 ;}for (I = 0; I <maxint; I ++) // clear the quotient and remainder 0 {C [I] = 0; d [I] = 0;} Len = A [0]; d [0] = 0; for (I = Len; I> = 1; I --) // division by phase {for (j = d [0]; j> = 1; j --) d [J + 1] = d [J]; d [1] = A [I]; // high * 10 + ladies and gentlemen d [0] ++; // increase the length of array d by 1 while (compare (D, B)> = 0) // compare D, B size {for (j = 1; j <= d [0]; j ++) // do the subtraction D-B {d [J]-= B [J]; If (d [J] <0) {d [J] + = 10; d [J + 1] -- ;}} while (j> 0 & D [J] = 0) // remove the high value 0 J --; d [0] = J; C [I] ++; // Add 1} J = B [0] to the bid of the business. while (C [J] = 0 & J> 0) j --; // evaluate the length of the quotient array C [0] = J; printf ("Big integers Div result: "); for (I = C [0]; I> = 1; I --) // print vendor printf (" % d ", C [I]); printf ("\ tarithmetic compliment:"); // print the remainder for (I = d [0]; I> = 1; I --) printf ("% d ", d [I]); printf ("\ n ");}

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.