1101: [Poi2007]zap time limit: ten Sec Memory Limit: 162 MB
Submit: 1646 Solved: 577
[Submit] [Status] [Discuss] Description
FGD is cracking a cipher, and he needs to answer a number of similar questions: for a given integer, a, B, and D, how many positive integers are to X, Y, X<=a,y<=b, and gcd (x, y) =d. As a classmate of FGD, FGD hopes to get your help.
Input
The first line contains a positive integer n, which indicates that there are altogether n groups of queries. (1<=n<= 50000) next n rows, each line represents a query, three positive integers per line, respectively, A,b,d. (1<=d<=a,b<=50000)
Output
For each set of queries, output to the output file zap.out a positive integer that represents the integer logarithm that satisfies the condition.
Sample Input2
4 5 2
6 4 3Sample Output3
2HINT
For the first set of queries, an integer pair that satisfies the condition has (2,2), (2,4), (4,2). For the second set of queries, an integer pair that satisfies the condition has (6,3), (3,3).
Source
This is entitled Mobius Inversion:
PS: The calculation process cannot use long long or tle
Formula derivation
Let's take a look at popoqqq ppt "Möbius inversion"
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include < functional> #include <iostream> #include <cmath>using namespace std; #define for (i,n) for (int i=1;i<=n ; i++) #define Fork (i,k,n) for (int i=k;i<=n;i++) #define MEM (a) memset (A,0,sizeof (a)); #define MAXN (50000+10) typedef Long Long ll;int p[maxn]={0},tot;bool b[maxn]={0};int mu[maxn]={0},sum[maxn]={0};inline int read () {int X=0,f=1;char ch= GetChar (); while (ch< ' 0 ' &&ch> ' 9 ') {if (ch== '-') f=-1; Ch=getchar ();} while (ch>= ' 0 ' &&ch<= ' 9 ') {x=x*10+ch-' 0 '; Ch=getchar ();} return x*f;} void Make_prime (int n) {tot=0; mu[1]=1; Fork (i,2,n) {if (!b[i]) p[++tot]=i,mu[i]=-1; for (J,tot) {if (i*p[j]>n) break;b[i*p[j]]=1;if (i%p[j]==0) {mu[i*p[j]]=0; Mu[i*p[j]]=-mu[i]; }}sum[0]=0; for (I,n) sum[i]=sum[i-1]+mu[i];} int N,m,d;int calc () {int ans=0;for (int i=1,last=1;i<=n;i=last+1) {last=min (n/(n/i), m/(m/i)), ans+= (sum[last]-sum[ I-1]) * (n/i) * (m/i);} printf ("%d\n", aNS); return ans;} int main () {//freopen ("bzoj1101.in", "R", stdin); MEM (P) mem (b) Mem (MU) mem (sum) int N = 50000;make_prime (n); int T; T=read (); while (t--) {n=read (); M=read (); D=read (); if (n>m) swap (n,m); N/=d,m/=d;calc ();} return 0;}
Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.
Bzoj 1101 ([poi2007]zap-satisfies the number of X<=A&&Y<=B&&GCD (x, y) =d)