Bzoj 3992 Sdoi2015 Sequence Statistics fast number theory transformation

Source: Internet
Author: User

Question: given n (n<=10^9), prime number M (3<=m<=8000), 1<=x=m, and a set of [0,m-1] intervals, how many series of n is satisfied that each element belongs to the set S and the product of all elements mod m =x

Find the root, take an indicator of each element in the S set, and then generate the generating function f (x)

So the answer is (f (x)) ^n (mod x^ (m-1), mod 1004535809)

On the NTT with a polynomial quick power to do it.

#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M 16400# Define MOD 1004535809#define INF 0x3f3f3f3f#define G 3using namespace Std;int n,m,d,x,s;int ind[m];long long Quick_power (l Ong long X,int y,int p) {Long long re=1;while (y) {if (y&1) (re*=x)%=p; (x*=x)%=p; y>>=1;} return re;} void NTT (int a[],int n,int type) {static int temp[m];int i;if (n==1) return; for (i=0;i<n;i+=2) temp[i>>1]=a[i], temp[i+n>>1]=a[i+1];memcpy (A,temp,sizeof (a[0]) *n); int *l=a,*r=a+ (n>>1); NTT (L,n>>1,type); NTT (R,n>>1,type); Long long W=quick_power (G, (Long Long) type* (MOD-1)/n% (MOD-1), MOD), Wn=1;for (i=0;i<n> >1;i++, (wn*=w)%=mod) temp[i]= (L[i]+wn*r[i])%mod,temp[i+ (n>>1)]= (l[i]-wn*r[i]%mod+mod)%MOD;memcpy (A, Temp,sizeof (A[0]) *n);} struct Gf{int a[m]; GF () {}GF (bool) {memset (a,0,sizeof a); a[0]=1;} int& operator [] (int x) {return a[x];} gf& operator *= (const GF &f) {static int b[m];int i;memcpy (b,f.a,sizeof b); NTT (A,d,1); NTT (b,d,1); for (i=0;i<d;i++) a[i]= (long Long) a[i]*b[i]%mod; NTT (a,d,mod-2); for (i=m-1;i<=m-2<<1;i++) (a[i-(m-1)]+=a[i])%=mod,a[i]=0;long long Inv=quick_power (d,MOD-2 , MOD); for (i=0;i<=m-2;i++) A[i]=a[i]*inv%mod;return *this;}} A;int Get_primitive_root () {static int stack[m],top;int i,j,temp=m-1;for (i=2;i<=temp;i++) if (temp%i==0) {stack[++ Top]=i;while (temp%i==0) temp/=i;} for (i=2;; i++) {for (j=1;j<=top;j++) if (Quick_power (i, (m-1)/stack[j],m) ==1) break;if (j==top+1) return i;}} GF Quick_power (gf &x,int y) {gf Re (true), while (y) {if (y&1) re*=x;x*=x; y>>=1;} return re;} int main () {int i,x;cin>>n>>m>>x>>s;for (d=1;d<=m+m;d<<=1); int g=get_primitive_ Root (); for (i=0,x=1;i<m-1;i++, (x*=g)%=m) ind[x]=i;for (i=1;i<=s;i++) {scanf ("%d", &x); if (!x) continue;a[ Ind[x]]=1;} GF Ans=quick_power (a,n); Cout<<ans[ind[x]]<<endl;return 0;}


Bzoj 3992 Sdoi2015 Sequence Statistics fast number theory transformation

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.