BZOJ2333[SCOI2011] Tricky operation
Test instructions
There are n nodes, M operations: Connect two nodes, the weight of a single node increases V, the weights of all nodes of the connected block are increased by V, the weights of all nodes are increased by V, the weights of the nodes are queried, the weights of the nodes in the connected block where the nodes are queried, and the weights of the nodes with the highest weights in all nodes are queried. n,m≤300000
Exercises
Can and heap, although I heard that the pairing heap very fast, but the tutorial is too little to write, so to learn the oblique heap, relatively good writing. The oblique heap is actually a binary tree, the core is the merge operation, which is a recursive process, a bit like the treap delete operation. The method of ensuring the complexity of the inclined heap is to combine the right node with each recursive merge, and then exchange the left and then nodes, so that the whole tree and splay can be "automatically" balanced and metaphysical. To modify the entire connected block, mark the line. The special point of this problem is to ask for the maximum value of all nodes, you can use the STL set to maintain the root node of all connected blocks, when the edge and modify the weight value if the root node is modified to maintain the set.
Code:
1#include <cstdio>2#include <cstring>3#include <algorithm>4#include <Set>5 #defineInc (I,J,K) for (int i=j;i<=k;i++)6 #defineMAXN 3001007 #defineINF 0X3FFFFFFF8 using namespacestd;9 Ten intfa[maxn],ch[maxn][2],tg[maxn],v[maxn],n,m,add; OneMultiset <int>St; A voidPushdown (intx) { - if(Tg[x]) { - if(ch[x][0]) tg[ch[x][0]]+=tg[x],v[ch[x][0]]+=Tg[x]; the if(ch[x][1]) tg[ch[x][1]]+=tg[x],v[ch[x][1]]+=Tg[x]; -tg[x]=0; - } - } + intDt[maxn],dts; - intFindintx) { +dt[dts=1]=x; while(Fa[x]) x=fa[x],dt[++dts]=x; A for(inti=dts;i>=1; i--) Pushdown (Dt[i]);returnx; at } - intMergeintXinty) { - if(!x| |! YreturnX+y;if(v[x]<V[y]) swap (x, y); Pushdown (x); -ch[x][1]=merge (ch[x][1],y); fa[ch[x][1]]=x; Swap (ch[x][0],ch[x][1]);returnx; - } - intDelintx) { in intT=merge (ch[x][0],ch[x][1]), f=fa[x]; fa[x]=ch[x][0]=ch[x][1]=0; -Fa[t]=f;if(f) ch[f][ch[f][1]==x]=t;returnT; to } + voidUpdate1 (intXintval) { - intY=find (x);intT=del (x); v[x]+=Val; the if(y!=x) { * intz=merge (y,x); St.erase (St.find (v[y)); St.insert (V[z]); $}Else{Panax Notoginseng if(t) { - intZ=merge (T,X); St.erase (St.find (v[x]-val)), St.insert (V[z]); the}ElseSt.erase (St.find (v[x]-val)), St.insert (V[x]); + } A } the voidUpdate2 (intXintval) { +X=find (x); Tg[x]+=val; V[x]+=val;if(!fa[x]) st.erase (St.find (v[x]-val)), St.insert (V[x]); - } $ voidUpdate3 (intVal) {add+=Val;} $ intQuery1 (intx) {find (x);returnv[x];} - intQuery2 (intx) {intY=find (x);returnv[y];} - intQuery3 () {return* --St.find (INF);} the voidConnectintXinty) { - intXx=find (x), Yy=find (y);if(XX==YY)return;intz=merge (XX,YY);Wuyi if(z==xx) St.erase (St.find (V[yy]));Elsest.erase (St.find (v[xx)); the } - Charopt[3]; Wu intMain () { - //freopen ("Test.txt", "R", stdin); Aboutscanf"%d", &n); Add=0; St.clear (); $Inc (I,1, N) { -scanf"%d", &v[i]); St.insert (V[i]); fa[i]=ch[i][0]=ch[i][1]=tg[i]=0; - } -scanf"%d",&m); AInc (I,1, M) { +scanf"%s", opt);intx, y; the if(opt[0]=='U') scanf ("%d%d",&x,&y), connect (x, y); - if(opt[0]=='A'){ $ if(opt[1]=='1') scanf ("%d%d",&x,&y), update1 (x, y); the if(opt[1]=='2') scanf ("%d%d",&x,&y), Update2 (x, y); the if(opt[1]=='3') scanf ("%d",&x), Update3 (x); the } the if(opt[0]=='F'){ - if(opt[1]=='1') scanf ("%d", &x), printf ("%d\n", Query1 (x) +add); in if(opt[1]=='2') scanf ("%d", &x), printf ("%d\n", Query2 (x) +add); the if(opt[1]=='3') printf ("%d\n", Query3 () +add); the } About //if (i==2) break; the } the return 0; the}
20160530
BZOJ2333[SCOI2011] Tricky operation