Time Limit:10 Sec Memory limit:512 MB
submit:744 solved:394 Description
We call a positive integer n is a lucky number when and only if its decimal representation does not contain any element in the number string set S as its substring. For example, when s= (22,333,0233), 233 is the lucky number, 2333, 20233, 3223 is not the lucky number.
Given N and S, calculate the number of lucky numbers not greater than N.
Input
The first line of the input contains the integer n.
The next line is an integer m, which represents the number of elements in S.
The next m line, a number string per line, represents an element in S.
Output
Outputs an integer that represents the value of the answer modulus 109+7.
Sample Input20
3
2
3
14
Sample Output -HINT
The L in the following table represents the length of N, and L represents the sum of all the string lengths in S.
1 < =l < =1200, 1 < =m < =100, 1 < =l < =1500
Source
Round 1 Day 1
DP on AC automaton
Just a little bit more trouble than the DP on the trie tree.
First build the trie tree, set up a good AC automaton, and then run the digital DP. The case where the length of the number is less than n is processed separately, the maximum bit limit is not considered at this time. After processing a number length equal to n length, when the highest bit is not filled to separate the decision.
See the code specifically:
1 /*by Silvern*/2#include <iostream>3#include <algorithm>4#include <cstring>5#include <cstdio>6#include <cmath>7#include <queue>8 using namespacestd;9 Const intmod=1e9+7;Ten intt[1510][ One],cnt=1; One BOOLend[1510];intfail[1510]; A voidInit () { for(intI=0; i<=9; i++) t[0][i]=1;} - voidInsertChars[]) { - intrt=1, I,j; the intlen=strlen (s); - for(i=0; i<len;i++){ - if(!t[rt][s[i]-'0']) t[rt][s[i]-'0']=++CNT; -rt=t[rt][s[i]-'0']; + } -end[rt]=1; + return; A } at intq[15100],hd,tl; - voidBuild () { -Hd=0, tl=1; -q[++hd]=1; -fail[1]=0; - while(hd<=TL) { in intnow=q[hd++]; -end[now]|=End[fail[now]]; to for(intI=0; i<=9; i++){ + intv=T[now][i]; - if(!v) { thet[now][i]=T[fail[now]][i]; * } $ Else{Panax Notoginseng intk=Fail[now]; - while(!t[k][i]) k=Fail[k]; thefail[v]=T[k][i]; +q[++tl]=v; A } the } + } - return; $ } $ intn,m; - Chars[1510],c[1510]; - inta[1510]; the intf[1510][1510][2]; - intans=0;Wuyi intMain () { thescanf"%s", s+1); - inti,j; Wu intLen=strlen (s+1); - for(i=1; i<=len;i++) a[i]=s[i]-'0'; About init (); $scanf"%d",&m); - for(i=1; i<=m;i++){ -scanf"%s", c); - Insert (c); A } + Build (); the for(i=1; i<=9; i++)//First - if(!end[t[1][i]]) $f[1][t[1][i]][0]++; the for(i=1; i<len-1; i++) the for(j=1; j<=cnt;j++) the for(intk=0; k<=9; k++){ the if(!End[t[j][k]]) { -f[i+1][t[j][k]][0]+=f[i][j][0]; inf[i+1][t[j][k]][0]%=MoD; the } the } About for(i=1; i<len;i++) the for(j=1; j<=cnt;j++) ans= (ans+f[i][j][0])%MoD; theMemset (F,0,sizeoff); the for(i=1; i<=a[1];i++) + if(!end[t[1][i]]) { - if(i==a[1]) f[1][t[1][i]][1]++; the Elsef[1][t[1][i]][0]++;Bayi } the for(i=1; i<len;i++) the for(j=1; j<=cnt;j++) - for(intk=0; k<=9; k++) - if(!End[t[j][k]]) { thef[i+1][t[j][k]][0]+=f[i][j][0]; thef[i+1][t[j][k]][0]%=MoD; the if(k<a[i+1]){ thef[i+1][t[j][k]][0]+=f[i][j][1]; -f[i+1][t[j][k]][0]%=MoD; the } the Else if(k==a[i+1]){ thef[i+1][t[j][k]][1]+=f[i][j][1];94f[i+1][t[j][k]][1]%=MoD; the } the } the for(i=1; i<=cnt;i++){98Ans= (ans+f[len][i][0])%MoD; AboutAns= (ans+f[len][i][1])%MoD; - }101printf"%d\n", ans);102 return 0;103}
Bzoj3530 [Sdoi2014] Count