DFT Executes the Discrete Fourier positive transformation or the Discrete Fourier inverse transformation of one-dimensional or two-dimensional floating point groups. # Define cv_dxt_forward 0 # Define cv_dxt_inverse 1 # Define cv_dxt_scale: 2 # Define cv_dxt_rows: 4 # Define cv_dxt_inv_scale (cv_dxt_scale | cv_dxt_inverse) # Define cv_dxt_inverse_scale cv_dxt_inv_scale Void cvdft (const cvarr * SRC, cvarr * DST, int flags ); SRC Input array, real number or plural number. DST The output array has the same type and size as the input array. Flags Conversion sign, a combination of the following values: Cv_dxt_forward-transforms forward to 1D or 2D. The result is not scaled. Cv_dxt_inverse-reverse 1D or 2D transformation. The result is not scaled. Of course, cv_dxt_forward and cv_dxt_inverse are mutually exclusive. Cv_dxt_scale-scale the result: divide it by array elements. Generally, it is combined with cv_dxt_inverse. You can use the cv_dxt_inv_scale abbreviation.
Cv_dxt_rows-each independent row of the input matrix performs integer or inverse transformation. This flag allows users to transform multiple vectors at the same time to reduce overhead (it is usually several times faster than processing itself) and perform 3D and high-dimensional transformations.
The cvdft function executes the Discrete Fourier positive transformation or the Discrete Fourier inverse transformation of one-dimensional or two-dimensional floating point groups: Positive Fourier transformation of N element vector: Y = f (n )? X, here f (n) JK = exp (-I? 2PI? J? K/N), I = SQRT (-1) Inverse Fourier transformation of N element vector: X' = (f (N)-1? Y = conj (f (N ))? Y X = (1/n )? X Positive Fourier transformation of m × N element two-dimensional vectors: Y = f (m )? X? F (N) Inverse Fourier transformation of m × N element 2D vectors: X' = conj (f (M ))? Y? Conj (f (n )) X = (1/(m? N ))? X' Assume that the real number data (single channel), the compression format referenced from IPL is used to represent the result of a forward Fourier transformation or the input of a Reverse Fourier Transformation: Re y0, 0: re y0, 1: Im y0, 1: re y0, 2: Im y0, 2... re y0, n/2-1 im y0, n/2-1 re y0, n/2 Re Y1, 0: re Y1, 1: Im Y1, 1: re Y1, 2: Im Y1, 2... re Y1, n/2-1 im Y1, n/2-1 re Y1, n/2 Im Y1, 0: re Y2, 1: Im Y2, 1: re Y2, 2: Im Y2, 2... re Y2, n/2-1 im Y2, n/2-1 im Y2, n/2 ........................................ ........................................ ............ Re ym/2-Re YM-3, 1 im YM-3, 1 re YM-3, 2 Im YM-3, 2... re YM-3, n/2-1 im YM-3, n/2-1 re YM-3, n/2 Im ym/2-Re YM-2, 1 im YM-2, 1 re YM-2, 2 Im YM-2, 2... re YM-2, n/2-1 im YM-2, n/2-1 im YM-2, n/2 Re ym/: re YM-1, 1 im YM-1, 1 re YM-1, 2 Im YM-1, 2... re YM-1, n/2-1 im YM-1, n/2-1 im YM-1, n/2 NOTE: If n is an even number and the last column exists (is present), if M is an even number, the last row (is present ). The transformation result of a one-dimensional real number is like the form of the first row of the matrix above. Solving Two-dimensional convolution using DFT Cvmat * A = cvcreatemat (M1, N1, cv_32f ); Cvmat * B = cvcreatemat (M2, N2, A-> type ); |