Chapter II Self-Test

Source: Internet
Author: User


1. Fill in the blanks


(1) $\frac12 F ' (X_0) $


To make $x =x_0+ \delta x$, the
\[
\mbox{native}=\lim_{\delta x\to 0}
\frac{F (x_0 +\frac{\delta x}{2})-F (x_0)} {\delta X}
=\frac12\lim_{\delta x\to 0}
\frac{F (x_0 +\frac{\delta x}{2})-F (x_0)} {\frac{\delta x}{2}}=\frac12 F ' (X_0).
\]

If not strictly utilized on $x $ Rockwell can be seen more intuitively
\[
\mbox{Native}=\lim_{x\to X_0}
\frac{\frac12 F ' (\frac{x+x_0}{2})} {1}
=\frac12 F ' (X_0).
\]


(2)-4

Because
\[
\frac{2}{x^3} f ' (\frac{1}{x^2}) =\frac1x,
\]
So
\[
F ' (\frac{1}{x^2}) =-2x^2,
\]
So that the $x =\sqrt 2$ can be.


(3) $ ( -1) ^{n+1} n!$

Because
\[
f^{(N)} (x) = \frac{n!} {(1-x) ^{n+1}}
\]


(4)
\[
Y ' = \frac{e^x+2x \cos (x^2+y^2)-y^2}
{2xy-2y \cos (x^2 +y^2)}
\]



2. (1)
\[
\begin{aligned}
Y ' &=\left (
\arcsin \frac{2\sin x+1}{2+\sin x}
\right) '
\\
&=\left (
\frac{2\sin x+1}{2+\sin x}
\right) '
\frac{1}{\sqrt{1-\left (
\frac{2\sin x+1}{2+\sin x}
\right) ^2}}
\\
&=
\left (2-
\frac{3}{2+\sin X}
\right) '
\frac{1}{\sqrt{1-\left (
\frac{2\sin x+1}{2+\sin x}
\right) ^2}}
\\
&= \frac{3 \cos x}{(2+\sin x) ^2}
\frac{|2+\sin x|} {\SQRT 3 |\cos x|}
\\
&=
\frac{3 \cos x}{(2+\sin x) ^2}
\frac{2+\sin x} {\SQRT 3 \cos x} \qquad (|x|<\frac\pi 2)
\\
&= \frac{\sqrt 3}{2+\sin X}
\end{aligned}
\]
So
\[
DY = \frac{\sqrt 3}{2+\sin x} dx.
\]


(2) as
\[
Y ' = (f (x+y)) '
= F ' (x+y) (1+y '),
\]
So
\[
Y ' = \frac{f ' (X+y)} {1-f ' (x+y)}.
\]
So
\[
\begin{aligned}
Y ' &= \left (
\frac{F ' (X+y)} {1-f ' (x+y)}
\right) '
\\
&= \frac{F ' (x+y) (1+y ') (1-f ' (x+y)) +
F ' (x+y) F ' (x+y) (1+y ')
}
{(1-f ' (x+y)) ^2}
\\
&=
\frac{F ' (x+y) (1+y ')
}
{(1-f ' (x+y)) ^2}
\\
&= \frac{F ' (X+y)} {(1-f ' (x+y)) ^3}.
\end{aligned}
\]


(3) First
\[
\frac{dx}{dt}= 6t +2,
\qquad \frac{dy}{dt}=
\frac{e^y \cos T} {1-e^{y}\sin T}
=\frac{e^y \cos t} {2-y},
\]
So
\[
\FRAC{DY}{DX}
= \frac{dy}{dt}/\frac{dx}{dt}
=\frac{e^y \cos T} {(2-y) (6t+2)},
\]
That
\[
\FRAC{D}{DT} (\frac{dy}{dx})
= \frac{e^y y ' (t) \cos t-e^y \sin T} {(2-y) (6t+2)}-\frac{e^y \cos t [6 (2-Y)-y ' (6t+2)]} {(2-y) ^2 (6t+2) ^2}
\]
And because when $t =0$, $x =3,y=1$ so
\[
\frac{d^2 y}{d x^2} \bigg|_{t=0}
=\FRAC12 e^2-\frac34 E.
\]


3. Proof: According to the question has
\[
\lim_{x\to 0} \exp
\left (
\frac{\ln (1+x +\frac{f (x)}{x})}{x}
\right)
=\exp
\left (\lim_{x\to 0}
\frac{\ln (1+x +\frac{f (x)}{x})}{x}
\right)
=e^3,
\]
According to the monotonicity of exponential function, there are
\[
\lim_{x\to 0}
\frac{\ln (1+x +\frac{f (x)}{x})}{x}=3.
\tag{*}
\]
So
\[
\lim_{x\to 0}
{\ln (1+x +\frac{f (x)}{x})}
=
\lim_{x\to 0}
\frac{\ln (1+x +\frac{f (x)}{x})}{x}
\cdot \lim_{x\to 0} x=0=\ln 1.
\]
According to the monotonicity of the logarithmic function, there are
\[
\lim_{x\to 0} (x +\frac{f (x)}{x}) =0.
\tag{**}
\]
First of all
\[
\lim_{x\to 0} (X^2+{f (x)}) =\lim_{x\to 0} (x +\frac{f (x)}{x}) \cdot \lim_{x\to 0} x=0,
\]
Launch
\[
F (0) =\lim_{x\to 0} f (x) =-\lim_{x\to 0}x^2=0.
\]
Second, by $ (* *) $
\[
\lim_{x\to 0} \frac{f (x)}{x}
= \lim_{x\to 0} \frac{f ' (x)}{1}=f ' (0) =0.
\]
Again, by $ (*) $ and $ (* *) $
\[
\lim_{x\to 0}
\frac{\ln (1+x +\frac{f (x)}{x})}{x}
=
\lim_{x\to 0}
\frac{x +\frac{f (x)}{x}}{x}
=
\lim_{x\to 0}
\frac{x^2 +{f (x)}}{x^2}
=1+\lim_{x\to 0}
\frac{f ' (x)}{2x}
=1+\lim_{x\to 0}
\frac{f ' (x)-F ' (0)}{2x}
= 1+\frac12 F ' (0)
=3
\]
That is $f ' (0) =4$. Sum up
\[
F (0) =0,f ' (0) =0,f "(0) =4.
\]

Note: The front is only used once indeterminate form, the last step is defined, because according to the conditions, the second derivative is not continuous, if the use of indeterminate form no way to get the limit, so with the definition, mathematics is very subtle ...


(2)
\[
\mbox{native}=\lim_{x\to 0} \exp \frac{\ln (1+\frac{f (x)}{x})}
{x}
= \exp \left (
\lim_{x\to 0} \frac{\ln (1+\frac{f (x)}{x})}
{x}\right)
=\exp \left (
\lim_{x\to 0} \frac{f (x)}{x^2}\right)
=e^2.
\]



(4) First, assuming $x =0$, the
\[
F (0) = 0,
\]
Second, assume that $x >0$, because $e ^{tx}\to +\infty$ when $t \to +\infty$, the
\[
F (x) =\lim_{t\to +\infty}
\frac{x} {2+X^2-E^{TX}}=0,
\]
Finally, when $x <0$, because $e ^{tx}\to 0$ when $t \to +\infty$, the
\[
F (x) =\lim_{t\to +\infty}
\frac{x} {2+X^2-E^{TX}}=\frac{x}{2+x^2}.
\]
Sum up
\[
f (x) =
\begin{cases}
0, & X\geq 0,
\\
\frac{x}{2+x^2}, & x< 0.
\end{cases}
\]
Notice that $f (x) $ is a continuous function, and when $x \neq 0$ can be directed. and
\[
F ' _+ (0) = 0, \qquad
F_-' (0) =\lim_{\delta x\to 0^-}
\frac{\frac{\delta x}{2 + (\delta x) ^2}-0} {\delta x}=\FRAC12,
\]
therefore $f (x) $ is not =0$ at the $x.



5. According to the Leibniz formula
\[
\begin{aligned}
F^{(2001)} (x) &= \frac12 (x^2 \sin (2x)) ^{(2001)}
\\
&AMP;=\FRAC12 x^2 \sin^{(2001)} (2x)
+ c_{2001}^1 x \sin^{(2x)}
+ c_{2001}^2 \sin^{(1999)} (2x).
\end{aligned}
\]
Notice that the $x =0$, the first two items are zero, so
\[
F^{(2001)} (0)
= c_{2001}^2 2^{1999} \sin (2\cdot 0 +\frac{1999\pi}{2})
=c_{2001}^2 2^{1999} \sin (499 \cdot 2\pi +\frac{3\pi}{2})
=-c_{2001}^2 2^{1999}.
\]



6. Proof: According to the question has
\[
F (0+0) =f (0) F (0),
\]
Therefore $f (0) =1$. and
\[
F ' (x)
= \lim_{\delta x\to 0}
\frac{f (X+\delta x)-F (x)} {\delta X}
=
\lim_{\delta x\to 0}
\frac{f (x) F (\delta X)-F (x)} {\delta X}
= f (x) \lim_{\delta x\to 0}
\frac{f (\delta x)-1} {\delta X}
=f (x) F ' (0) =f (x).
\]

Chapter II Self-Test

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.