Title Link: 5289 Assignment
Test instructions: given N and K, indicating that there is a series of n number of sequences, the number of intervals, the interval of any two number of the difference is less than k
Ideas:
1. The interval of any two number of less than k equivalent to the interval max-min<k, with the RMQ to maintain, the maximum interval minimum value
2. Finally, the violent enumeration interval must be timed out, it is found that with the expansion of the interval max-min value is also larger (non-diminishing), there is monotonicity is easy to think of two points, so is the enumeration of the left endpoint, two points to find the right endpoint.
AC Code:
#include <stdio.h> #include <algorithm>using namespace std; #define LL Int#define Lson l,m,rt<<1# Define Rson m+1,r,rt<<1|1const LL maxn = 100010; LL DP[3][MAXN][20]; LL mm[maxn],a[maxn];//Initialize RMQ, b array subscript starting from 1, start with 0 simple modify void initrmq (LL n,ll b[]) {mm[0] =-1; for (LL i = 1; I <= n; i++) {Mm[i] = ((i& (i-1)) = = 0)? Mm[i-1]+1:mm[i-1]; Dp[0][i][0] = Dp[1][i][0]=b[i]; } for (ll j = 1, J <= Mm[n]; j + +) {for (ll i = 1; i + (1<<j)-1 <= N; i++) {Dp[0][i][j] = Max (dp[0][i][j-1],dp[0][i+ (1<< (j-1))][j-1]); Dp[1][i][j] = min (dp[1][i][j-1],dp[1][i+ (1<< (j-1))][j-1]); }}}//Query Max ll RMQ (ll X,ll y) {ll k = mm[y-x+1]; LL Tmp=max (dp[0][x][k],dp[0][y-(1<<k) +1][k]); Tmp-=min (dp[1][x][k],dp[1][y-(1<<k) +1][k]); return TMP;} int main () {LL t,i,n; LL K; scanf ("%d", &t); while (t--) {scanf ("%d%d", &n,&k); for (I=1; i<=n; i++) scanf("%d", &a[i]); INITRMQ (N,a); LL l,r,m; __int64 ans=0; for (I=1; i<=n; i++) {l=i,r=n; LL t1,t2,tmp; while (l<=r) {m= (l+r)/2; TMP=RMQ (I,M); if (tmp<k) l=m+1; else r=m-1; }//printf ("..... [L%d m%d r%d],tmp=%d\n], l,m,r,tmp); ans+= (__int64) (l-i); } printf ("%i64d\n", ans); } return 0;}
Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.
5289 Assignment (rmq+ sub-interval)