Keras-anomaly-detection
Anomaly Detection implemented in Keras
The source codes of the recurrent, convolutional and feedforward networks auto-encoders for anomaly detection can be found in keras_anomaly_detection/library/convolutional. py and keras_anomaly_detection/library/recurrent. py and keras_anomaly_detection/library/feedforward. PY
The anomaly detection is implemented using auto-Encoder with convolutional, feedforward, and recurrent networks and can be applied:
- Timeseries data to detect Timeseries time windows that have Anomaly Pattern
- Lstmautoencoder in keras_anomaly_detection/library/Recurrent. py
- Conv1dautoencoder in keras_anomaly_detection/library/convolutional. py
- Cnnlstmautoencoder in keras_anomaly_detection/library/Recurrent. py
- Bidirectionallstmautoencoder in keras_anomaly_detection/library/Recurrent. py
- Structured Data (I. e., tabular data) to detect anomaly in data records
Keras-anomaly-detection code analysis-essentially SAE and lstm time series prediction