0. What is Pymongo
Pymongo is the Python module that operates MongoDB
1, installation Pymongo
# Easy_install Pymongo
2. Connect MongoDB
>>> Import Pymongo>>> conn = Pymongo. Mongoclient (Host=host,port=port,tz_aware=false)
3. Get a list of databases
>>> conn.database_names () [u'test1', u'test2' , u'admin', u'local']
4. Connect to the database
>>> db = Conn.get_database ("db_name")
5. Permission Verification
>>> db.authenticate ('username'password')
True
6. Get the aggregation list (the concept of aggregation is similar to a table in a relational database)
>>> db.collection_names () [u' account', u'role' , u 'item', u'online')
7. Connection Aggregation
>>> account = db.get_collection ("col_name")
8. View a record of the aggregation
>>> Account.find_one ()
9. View all the keys that are clustered (similar to the fields in the relational database)
>>> Account.find_one (). Keys ()
10. View all collected Records
for in account. Find (): .... Print I
11. View the total number of records
>>> account. Find (). Count ()
12. Query multiple records according to the conditions
for in account. Find ({"name""xxx"}): .... Print I
13. Sort the query results (default ascending ascending)
>>> account. Find (). Sort ("name", Pymongo. Ascending)>>> account. Find (). Sort (["name", Pymongo. Ascending), ("active_time", Pymongo. Descending)])
14. New Record
>>> Account.insert ({"name""Mike" " Active_time""20130408"})
15. Update record
>>> Account.update ({"name":"Mike"}, {"$set": {"Active_time":"20130408120000"}}) Note: If there are no keys in the data-Value"name":"Mike", you will add"Active_time":"20130408120000"
16. Delete record (without condition means delete all)
>>> Account.remove ({"name""Mike"})
Pycharm Ambiguous matching query
method 1.import re{'xxx': Re.compile ('xxx')}
Method 2. {'xxx': {'$regex':'xxx '}
18.and or
Account. Find ' Test ' ' Test '} } ] })
19. Case studies
#! /usr/bin/Envpython#--*--coding:utf-8--*--Import Pymongoimport rehost="**.**.**.**"Port=27017Conn= Pymongo. Mongoclient (host=host,port=port,tz_aware=False) db_name="Test"Log_name="Col"db_test=conn.get_database (db_name) Col_col=db_test.get_collection (log_name) #print"db names:", Conn.database_names () #print"col Names:", Db_test.collection_names () #print"One_line:", Col_col.find_one () #print"One_line_keys:", Col_col.find_one (). Keys () #col_col. Insert ({"Message2":"Hihihi","msg":"123"}) #col_col. Update ({"message":"hello*3"}, {"$set":{"message":"hello*3*9"}}) import Datetimey,m,d,h,m,s= .,2, -, -, -,0D=datetime.datetime (y,m,d,h,m,s) Delta= Datetime.timedelta (hours=8) d= dDelta#logs= Col_col.Find( {"Data":{"$GT":d}) #logs= Col_col.Find( {"message": Re.compile ("Hi")}) logs= Col_col.Find( {"$and": [{"message": Re.compile ("Hi")}, {"Data":{"$GT":d}}]}) C=Logs.count () forLinchLogs:print Lprint"Count:", Cprint"end!"
Pymongo Usage Summary