A. Pythagorean Theorem IItime limit per test
3 seconds
Memory limit per test
256 megabytes
Input
Standard input
Output
Standard output
In mathematics, the Pythagorean theorem-is a relation in Euclidean geometry among the three sides of a right-angled triangle. In terms of areas, it states:
In any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (
Two sides that meet at a right angle ).
The theorem can be written as an equation relating the lengths of the sidesA,BAndC,
Often called the Pythagorean equation:
A
2 cores + CoresB2 bytes = bytesC2
WhereCRepresents the length of the hypotenuse, andAAndBRepresent
The lengths of the other two sides.
GivenN, Your task is to count how many right-angled triangles with side-lengthsA,BAndCThat
Satisfied an inequality 1 limit ≤ limitALimit ≤ limitBLimit ≤ limitCLimit ≤ limitN.
Input
The only line contains one integerN(1 digit ≤ DigitNLimit ≤ limit 104)
We mentioned above.
Output
Print a single integer-the answer to the problem.
Sample test (s) input
5
Output
1
Input
74
Output
35
Idea: 10 ^ 8MLE, two points + enumeration n. Enumerative n is a good posture. Do not look for map for the free time of table creation, or it will die very quickly.
In addition, Yu GE's direct root code is actually the simplest and most effective method.
#include <algorithm>#include <iostream>#include <iomanip>#include <cstdio>#include <map>#include <cstdlib>#include <cstring>typedef long long ll;#defineclr(a)memset((a),0,sizeof (a))#definerep(i,a,b)for(int i=(a);i<(int)(b);i++)#defineper(i,a,b)for(int i=((a)-1);i>=(int)(b);i--)#defineinf0x7ffffff#defineeps1e-6using namespace std;int mm[10005];int num[10005];/*bool find(int a,int b,int key){ int mid=(a+b)/2; if(mm[mid]==key){ return 1; } if(a==b-1)return 0;//cause I sent the mid ,not the mid-1 or mid+1。 if(mm[mid]>key){ return find(a,mid,key); } else{ return find(mid,b,key); }}*/// the more adequate 'find' functionbool find(int a,int b,int key){ if(a>b)return 0; int mid=(a+b)/2; if(mm[mid]==key){ return 1; } if(mm[mid]>key){ return find(a,mid-1,key); } else{ return find(mid+1,b,key); }}int main(){ for(int i=1;i<=10000;i++){ mm[i]=i*i; } for(int i=10000;i>=1;i--){ for(int j=i-1;j>=1;j--){ int tt=i*i-j*j; if(tt>j*j)break; if(find(1,10000,tt)){ num[i]++; } } } int n; scanf("%d",&n); int sum=0; for(int i=1;i<=n;i++){ sum+=num[i]; } printf("%d\n",sum); //system("pause"); return 0;}