Tensorflow-based CNN convolutional neural network classifier for fasion-mnist Dataset

Source: Internet
Author: User

Write a tensorflow-based CNN to classify the fasion-mnist dataset.

This is the fasion-mnist dataset.

First, run the code and analyze:

import tensorflow as tfimport pandas as pdimport numpy as npconfig = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fraction = 0.3train_data = pd.read_csv(‘test.csv‘)test_data = pd.read_csv(‘test.csv‘)def Weight(shape):    initial = tf.truncated_normal(shape, stddev=0.1)    return tf.Variable(initial, tf.float32)def biases(shape):    initial = tf.constant(0.1, shape=shape)    return tf.Variable(initial, tf.float32)def conv(inputs, w):    return tf.nn.conv2d(inputs, w, strides=[1, 1, 1, 1], padding=‘SAME‘)def pool(inputs):    return tf.nn.max_pool(inputs, ksize=[1, 1, 1, 1], strides=[1, 2, 2, 1], padding=‘SAME‘)x = tf.placeholder(tf.float32, [None, 784])y = tf.placeholder(tf.int64, [None])x_image = tf.reshape(x, [-1, 28, 28, 1])w1 = Weight([5, 5, 1, 32])b1 = biases([32])conv1 = tf.nn.relu(conv(x_image, w1) + b1)p1 = pool(conv1)w2 = Weight([5, 5, 32, 64])b2 = biases([64])conv2 = tf.nn.relu(conv(p1, w2) + b2)p2 = pool(conv2)flattended = tf.reshape(p2, [-1, 7 * 7 * 64])w_fc1 = Weight([7 * 7 * 64, 1024])b_fc1 = biases([1024])fc1 = tf.matmul(flattended, w_fc1) + b_fc1h_fc1 = tf.nn.relu(fc1)w_fc2 = Weight([1024, 10])b_fc2 = biases([10])logits = tf.matmul(h_fc1, w_fc2) + b_fc2cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y)correct_prediction = tf.equal(y, tf.argmax(logits, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)init = tf.global_variables_initializer()sess = tf.Session(config=config)sess.run(init)for i in range(10000):    choice = np.random.choice(6000, 100)    batch = train_data.iloc[choice]    labels = np.array(batch.iloc[:, 0])    features = np.array(batch.iloc[:, 1:]).astype(np.float32)    sess.run(train_step, feed_dict={x: features, y: labels})    if i % 50 == 0:        test_batch = test_data.iloc[0:1000, :]        test_labes = np.array(test_batch.iloc[:, 0])        test_features = np.array(test_batch.iloc[:, 1:]).astype(np.float32)        print(sess.run(accuracy, feed_dict={x: test_features, y: test_labes}))sess.close()

 

1. Define weight, biases, Conv layer, pool Layer

def Weight(shape):    initial = tf.truncated_normal(shape, stddev=0.1)    return tf.Variable(initial, tf.float32)def biases(shape):    initial = tf.constant(0.1, shape=shape)    return tf.Variable(initial, tf.float32)def conv(inputs, w):    return tf.nn.conv2d(inputs, w, strides=[1, 1, 1, 1], padding=‘SAME‘)def pool(inputs):    return tf.nn.max_pool(inputs, ksize=[1, 1, 1, 1], strides=[1, 2, 2, 1], padding=‘SAME‘)

In this Code, the stride of the convolution layer is 1, and the padding method of the same is used. The Stride of the pooling layer is 2 on the x y axis. In this way, each time the data passes through convolution and pooling, the width and length of the image will change to 1/2, that is, the original 28x28 image will change from 14x14 to 7x7.

2. Define placeholder

Tensorflow-based CNN convolutional neural network classifier for fasion-mnist Dataset

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.