Modular arithmetic and Montgomery form for fast mode multiplication

Source: Internet
Author: User
Tags gcd

title :

The King of electrical tones

The following:

Finding the first n Xiangxiang multiplication and modulus of a sequence

Ideas :

①, the multiplication of this problem is a long long , can be solved by the idea of fast power (according to the number of one of the number of split). Of course your multiplication will be more of a log complexity ...

②,O (1) fast multiplication: An O (1) complexity solution for integer multiplication modulo (it is also applicable for the integral type of the four bits):

From the year of the country Training Team paper: Cochang: "Some methods and techniques for the optimization of the bottom of the program" (refer to the original link)

Long Long ll; #define MOL 123456789012345LLInline ll mul_mod_ll (ll A,ll b) {    = (ll) floor (A * (double0.5); c9/>= A * b-d * MOL;     if 0) ret = MOL;     return ret;}
View Code

③:DLs A sentence solution (of course, can not understand ...) )

refer to a blog Montgomery Modular multiplication (of course, also can not understand ...) Japanese)

The puzzle: (DLS Code)

#include <bits/stdc++.h>using namespacestd;#defineRep (i,a,n) for (int i=a;i<n;i++)#definePer (i,a,n) for (int i=n-1;i>=a;i--)#definePB Push_back#defineMP Make_pair#defineAll (x) (x). Begin (), (x). End ()#defineFi first#defineSe Second#defineSZ (x) ((int) (x). Size ())typedef vector<int>Vi;typedefLong LongLl;typedef pair<int,int>PII;Constll mod=1000000007; ll Powmod (ll A,ll b) {ll res=1; a%=mod; ASSERT (b>=0); for(; b;b>>=1){if(b&1) Res=res*a%mod;a=a*a%mod;}returnRes;} ll GCD (ll A,ll b) {returnB?GCD (b,a%b): A;}//Headtypedef unsignedLong Longu64;typedef __int128_t i128;typedef __uint128_t u128;int_,k;u64 a0,a1,m0,m1,c,m;structMod64 {Mod64 (): N_ (0{} Mod64 (u64 N): N_ (init (n)) {}StaticU64 Init (u64 W) {returnReduce (u128 (w) *R2); }    Static voidSet_mod (u64 m) {mod=m; ASSERT (mod&1); INV=m; Rep (I,0,5) inv*=2-inv*m; R2=-u128 (m)%m; }    Staticu64 Reduce (u128 x) {U64 y=u64 (x>> -)-u64 ((u128 (U64 (x) *INV) *mod) >> -); returnll (Y) <0? y+mod:y; } Mod64&operator+ = (Mod64 rhs) {n_+=rhs.n_-mod;if(LL (N_) <0) N_+=mod;return* This; } Mod64operator+ (MOD64 RHS)Const{returnMOD64 (* This)+=RHS;} Mod64&operator-= (Mod64 rhs) {n_-=rhs.n_;if(LL (N_) <0) N_+=mod;return* This; } Mod64operator-(MOD64 RHS)Const{returnMOD64 (* This)-=RHS;} Mod64&operator*= (Mod64 rhs) {n_=reduce (u128 (n_) *rhs.n_);return* This; } Mod64operator* (MOD64 RHS)Const{returnMOD64 (* This)*=RHS;} U64Get()Const{returnreduce (n_);} StaticU64 mod,inv,r2; U64 N_;}; U64 MOD64::MOD,MOD64::INV,MOD64::R2; U64 pmod (u64 a,u64 b,u64 p) {U64 d= (U64) Floor (A * (Long Double) b/p+0.5); LL ret=a*b-d*p; if(ret<0) ret+=p; returnret;} voidBruteforce () {u64 ans=1;  for(intI=0; i<=k;i++) {ans=Pmod (ans,a0,m); U64 A2=pmod (m0,a1,m) +pmod (m1,a0,m) +b;  while(a2>=m) a2-=M; A0=A1; a1=A2; } printf ("%llu\n", ans);} intMain () { for(SCANF ("%d", &_); _;_--) {scanf ("%llu%llu%llu%llu%llu%llu%d",&a0,&a1,&m0,&m1,&c,&m,&k);        Mod64::set_mod (M); Mod64 A0 (A0), A1 (A1), M0 (M0), M1 (M1), C (c), ans (1), A2 (0);  for(intI=0; i<=k;i++) {ans=ans*A0; A2=m0*a1+m1*a0+C; A0=A1; a1=A2; } printf ("%llu\n", ans.Get()); }}
View Code

Reference :

On some methods and techniques of the bottom-up optimization of programs

In addition to the calculation of the remainder more high-speed

Modular arithmetic and Montgomery form for fast mode multiplication

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.