Distribution\ (\ Mathcal {d} (\ Omega) \) any element in the dual space is called a distribution, that is, the distribution is \ (\ mathcal {d} (\ Omega )\) the linear functional above, \ (L \ In \ mathcal {d'} (\ Omega) \) and \ (V \ In \ mathcal {d} (\ Omega ),\) \ (L (v) = <L, \, V> \) \ (dualiy \, \, pairing. \)
$ \ Mit L ^ {p} (\ Omega) $ \ (\ subset \ mathcal {d'} (\ Omega )\), but $ \ mathcal {d'} (\ Omega) \ not \ subset \ mit L ^ {p} (\ Omega), p \ Ge, 1. $
Step 1 proves that $ \ forall L \ In \ mit L ^ {p} (\ Omega) $ is a linear functional of \ (\ mathcal {d} (\ Omega;
\ [\ Begin {Align *} l (v) & = <L, V >=\ int _ {\ Omega} l (x) V (x) \, dx, \ forall V \ In \ mathcal {d} (\ Omega ). \ L (\ alpha_1 v_1 + \ alpha_2 V_2) & = <L, \ alpha_1 v_1 + \ alpha_2 V_2 >\& = \ alpha_1 <L, v_1> + \ alpha_2 <L, v_2 >\&=\ alpha_1l (v_1) + \ alpha_2l (V_2), \,\,\,\,\,\,\forall \ alpha_1, \ alpha_2 \ In \ mathbb {r}, v_1, V_2 \ In \ mathcal {d} (\ Omega ). \ end {Align *} \]
Step 2 proves that \ (L \) is continuous, that is, proof \ (| L (V) | \ Leq c | v | _ {\ mathcal {d} (\ Omega )}. \) Let's prove it:
\ [\ Begin {Align *} l (v) & =\ int _ {\ Omega} l (x) V (x )\, DX \ Leq | L | _ p | v | _ Q \ & \ Leq | L | _ p (\ int _ {\ Omega} | V (x) | ^ {q} dx) ^ {\ frac {1} {q }}\& \ Leq | L | _ p | v | |_{\ mathcal {d} (\ Omega )} | \ Omega | ^ {\ frac {1} {q }}\& \ Leq c | V ||_{\ mathcal {d} (\ Omega )}. \ end {Align *} \]
Step 3: Prove $ \ mathcal {d'} (\ Omega) \ not \ subset \ mit L ^ {p} (\ Omega), p \ Ge, 1. $
? For example, $ \ mathcal {d'} (\ Omega) \ subset \ mit L ^ {p} (\ Omega), $ is represented by \ (risze, \ (\ forall V \ In \ mathcal {d} (\ Omega )\), \ (U \ In \ mit {L ^ {p} _ {\ Omega }}\),
? The following formula is met: