Numerical Solution of partial differential equations-learning Summary

Source: Internet
Author: User
Partial Differential Equation numerical solution --- learning Summary 1. Knowledge Review (Note: \ (\ mit V \) is a linear space)
  • Inner Product $ (\ cdot, \ cdot): \ mit V \ times \ mit V \ longrightarrow \ r $ is a bilinear ing that satisfies \ (I) (u, v) = (V, u), \ forall \, U, V \ In \ mit V \);

? $ (II) (u, u) \ GE 0, \ forall, U \ In \ mit v $; \ (III) (u, u) = 0 \) only when \ (u = 0 \).

  • Semi-norm \ (| \ cdot |: \ mit V \ longrightarrow \ r \) is a linear ing that satisfies \ (I) | v | \ GE 0, \ forall \, V \ In \ mit V; \) $ (ii) | CV | |=| C ||| v ||, \ forall V \ In \ mit V, \ forall C \ In \ r; $

    ? \ (Iii) | u + v | \ Leq | u | + | v |, \ forall U, V \ In \ mit v .\)

  • Norm half-norm + condition: \ (| u | = 0 \) When and only when \ (u = 0 \).

  • Norm Equivalence Theorem: Set \ (| \ cdot | \) and \ (| \ cdot | \) to linear space \ (\ mathbf V \) if there are two positive numbers \ (C_1 \) and \ (C_2 ,\)

    ? If the following unequal expressions are met, \ (| \ cdot | \) and \ (| \ cdot | \) are equivalent,
    \ [C_1 | v | \ Leq C_2 | v |, \ forall \, C_1, C_2 \ In \ r ,\, \ forall \, V \ In \ mit v. \]

  • Inner Product space if a linear space is given inner product, it is an inner product space.

    • Inner Product can generate induction norms
      \ [| V | = (V, V) ^ {1/2}, \, \ forall \, V \ In \ mit v. \]

    • Schwarz Inequality
      \ [| (W, V) | \ Leq | w | \, | v |, \, \ forall W, V \ In \ mit v. \]

  • The complete inner product space of the Hilbert space is the Hilbert space, that is, any kernel sequence in the inner product space is converged.
  • Norm linear space if a linear space is assigned a norm, it becomes norm linear space.
    • The inner product space must be a norm linear space, and its norm is \ (| v | = (V, V) ^ {1/2}, \, \ forall \, V \ In \ mit v. \)
  • The complete norm linear space in the he space, that is, any sequence of the keys in the norm linear space is converged.
    • The Hilbert space must be the space of the East Coast.
2. New Concept
  • Dual Space

    • If (\ mit V, | \ cdot | _ {\ mit v} \) and (\ mit W, | \ cdot | _ {\ mit w} \) is two norm linear spaces, from \ (\ mathbf V \) to \ (\ mit w \) the linear function of constitutes a norm linear space, which is recorded as \ (\ scr l (\ mit V; \ mit W )\). for \ (L \ In \ scr l (\ mit V; \ mit W) \), the defined norms are as follows:
      \ [| L | _ {\ scr l (\ mit V; \ mit W )}: = \ sup _ {0 \ neq v \ In \ mit v} \ frac {| LV |||_{\ mit W }{| | V ||_{\ MIT V }}. \]

    • If the \ (\ mit w \) space is a private space, \ (\ scr l (\ mit V; \ mit W) \) is also a private space.

    • If \ (\ mit W = \ r \), \ ({\ color {red} \ scr l (\ mit V; \ mathbf \ r )}\) is the dual space of \ (\ mit V \). It is often remembered as \ ({\ color {red} \ mit V '}\).

    • Dual pair (Duality pairingIs called the dual pair between \ (\ mit V \) and \ (\ mit V,
      \ [\ Begin {Align *} <\ cdot \, \, \ cdot> &: \ mit V '\ times \ mit V \ longrightarrow \ r \ & <L, v> \ longmapsto L (V ). \ end {Align *} \]

  • Various convergence Definitions

    • Strong Convergence: The sequence \ (\ {v_n \} \) in the linear space \ (\ mit V \) is weak in the \ (V \, \ In \ mit V \) refers to the convergence by the norm, namely \ (| v_n-v | \ rightarrow0 (n \ rightarrow \ infin ). \)

    • Weak Convergence: The sequence \ (\ {v_n \} \) in the linear space \ (\ mit V \) is weak in the \ (V \, \ In \ mit V \) it refers to the convergence of \ (L (v_n) \) to \ (L (V), \) for any \ (L \ In \ mit V ),\) that is, \ (| L (v_n)-L (v) | \ rightarrow0 (n \ rightarrow \ infin ). \)

    • * Weak Convergence: The sequence \ (\ {l_n \} \) in the dual space \ (\ mit V' \) is weak in \ (L \, \ In \ mit V' \) refers to any one \ (V \ In \ mit V \), all

      ? \ (| L_n (V)-L (v) | \ rightarrow 0 (n \ rightarrow \ infin ).\)

      • \ (Strong convergence of {\ color {red} \ mit V \ rightarrow weak convergence .}\)
      • \ (Weak convergence in {\ color {red} \ mit V' \ rightarrow * Weak Convergence .}\)
  • \ (\ Mit L ^ {p} (\ Omega) \) Space \ (\ Omega _ {open} \ subset \ r ^ {d }\), \ (d \ Ge 1 \), and \ (\ Omega \) isLebesgueMeasurable.

    • \ [\ Begin {Align *} \ mit L ^ {p} &: = \ left \ {v \, \, \ big | \ int _ {\ Omega }\, \ left | V (x) \ right | \, ^ p \, DX \ Leq \ infin \ right \}, \, 1 \ Leq p \, <\ infin, \ mit L ^ {\ infin} &: = \ sup \ left \ {| V (x) | \ big | \,\, X \ In \ Omega \ right \} <\ infin. \ end {Align *} \]

? Its norm is
\ [\ Begin {Align *} | v | _ {\ mit L ^ {P }}&:=\ left (\ int _ {\ Omega }\, \ left | V (x) \ right | \, ^ p \, DX \ right) ^ {1/p}, \, 1 \ Leq p \, <\ infin, \ | v | _ {\ mit L ^ {\ infin }&:=\ sup \ left \ {| V (x) | \ big | \,\, X \ In \ Omega \ right \} \ end {Align *} \]

  • \ (\ Mit L ^ {2} (\ Omega) \) space is actually a Hilbert space assigned to the right inner product, $ (W, V){\ Mit L ^ {2} (\ Omega)} = \ int{\ Omega}, w (x), V (x), DX $
    • \ ({\ Color {red} | \ cdot | _ 0 = | \ cdot | _ {\ mit L ^ {2} (\ Omega )}}\) \ ({\ color {black} {remember }}\)
    • \ (\ Mit L ^ {p} (\ Omega) \) is a real-life (its dual space is \ (\ mit L ^ {q} (\ Omega )\), \ (\ frac {1} {p} + \ frac {1} {q} = 1 \), and only \ (\ mit L ^ {2 }\) it is a Hilbert space (the dual space is itself ).
    • $ H \ ddot {o} lder \ (inequality: \) \ big | \ int _ {\ Omega}, w (x) V (x) dx \ big | \ Leq, | w |{\ Mit L ^ {p} (\ Omega)} | v |{\ Mit L ^ {q} (\ Omega)}, \ frac {1} {p} + \ frac {1} {q} = 1. $
    • \ (\ Mit L ^ {p} (\ Omega) \) $ \ subset \ mit L ^ {q} (\ Omega), Q \ Leq P. $
  • Distribution Function (\ (distributions \))

    • \ (\ Mit C ^ {\ infin} _ {0} (\ Omega) \) is \ (\ Omega \) with a compact set (I. e. bounded open set \ (\ Omega '\ subset \ Omega \), \ (D (\ part \ Omega, \ Omega)> 0 \) infinite dimension micro function, and any derivative of the Order on the boundary is zero. Sometimes it is recorded as \ (\ mathcal {d} (\ Omega )\).

    • \ (\ Mathcal {d} (\ Omega) \) derivative of the element \ (\ mathcal {d} ^ {\ Alpha} V: = \ frac {\ part ^ {| \ Alpha |} v} {\ part ^ {\ alpha_1} X_1 \ part ^ {\ alpha_2} X_2 \ cdots \ part ^ {\ alpha_d} x_d }, \) where \ (| \ Alpha | = \ alpha_1 + \ alpha_2 + \ cdots + \ alpha_d. \)

    • \ (V_n \ In \ mathcal {d} (\ Omega) \) converged on \ (V \ In \ mathcal {d} (\ Omega )\) it means that a bounded closed subset \ (k \) satisfies any one \ (n \), \ (v_n \) is 0 outside \ (k, and for any non-negative indicator \ (\ Alpha \), derivative \ (\ mathcal {d} ^ {\ Alpha} V \) consistent convergence on \ (\ mathcal {d} ^ {\ Alpha} v. \)

    • \ (\ Color {red} distribution \): \ (\ mathcal {d} (\ Omega) \) any element in the dual space is called a distribution, that is, the distribution is the linear function on \ (\ mathcal {d} (\ Omega) \), \ (L \ In \ mathcal {d'} (\ Omega )\) and \ (V \ In \ mathcal {d} (\ Omega), \) \ (L (v) = <L, \, V> \) \ (dualiy \, \, pairing. \)

    • Define a norm of \ (\ mathcal {d} (\ Omega) \), \ (| v | _ k = \ sup _ {\ Omega} | V (X) |, \, V \ In \ mathcal {d} (\ Omega ). \) (you can prove it yourself)

    • $ \ Mit L ^ {p} (\ Omega) $ \ (\ subset \ mathcal {d'} (\ Omega )\), but $ \ mathcal {d'} (\ Omega) \ not \ subset \ mit L ^ {p} (\ Omega), p \ Ge, 1. $

      Proof: Step 1 proof $ \ forall L \ [\ In \ mit L ^ {p} (\ Omega) $ is on $ \ mathcal {d} (\ Omega) $ linear functional; \]
      \ Begin {Align}
      L (v) & = <L, V >=\ int _ {\ Omega} l (x) V (x), dx, \ forall V \ In \ mathcal {d} (\ Omega ). \
      L (\ alpha_1 v_1 + \ alpha_2 V_2) & = <L, \ alpha_1 v_1 + \ alpha_2 V_2> \
      & =\ Alpha_1 <L, v_1> + \ alpha_2 <L, V_2> \
      & =\ Alpha_1l (v_1) + \ alpha_2l (V_2), \ forall \ alpha_1, \ alpha_2 \ In \ r, v_1, v_2 \ In \ mathcal {d} (\ Omega ).
      \ End {Align
      }
      $
      ? Step 2 proves that \ (L \) is continuous, that is, proof \ (| L (V) | \ Leq c | v | _ {\ mathcal {d} (\ Omega )}. \)

      ? The following is a proof:
      $
      \ Begin {Align *}
      L (v) & =\ int _ {\ Omega} l (x) V (x), DX \ Leq | L | _ p | v |Q \
      & \ Leq | L |P (\ int{\ Omega} | V (x) | ^ {q} dx) ^ {\ frac {1} {q }}\
      & \ Leq | L |P | v |{\ Mathcal {d} (\ Omega)} | \ Omega | ^ {\ frac {1} {q }}\
      & \ Leq c | v |
      {\ Mathcal {d} (\ Omega )}.

      \ End {Align *}
      $
      ? Step 3: Prove $ \ mathcal {d'} (\ Omega) \ not \ subset \ mit L ^ {p} (\ Omega), p \ Ge, 1. $

      ? For example, $ \ mathcal {d'} (\ Omega) \ subset \ mit L ^ {p} (\ Omega), $ is represented by \ (risze, \ (\ forall V \ In \ mathcal {d} (\ Omega )\), \ (U \ In \ mit {L ^ {p} _ {\ Omega }}\),

      ? The following formula is met:

      ?

      ?

Numerical Solution of partial differential equations-learning Summary

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.