[Fourier transform and its application study notes] six. Thermal equation discussion

Source: Internet
Author: User
Tags cos

This is my study notes, the course for NetEase Open Class Stanford University Open Class: Fourier transform and its application.

As mentioned in the previous lesson, in Fourier analysis of aperiodic functions, there is

$C _k = \displaystyle{\frac{1}{t}\int_{-\frac{t}{2}}^{\frac{t}{2}}f (T) e^{-2\pi I\frac{k}{t}t}dt}$

$f (t) = \displaystyle{\sum_{k=-\infty}^{\infty}c_ke^{2\pi i\frac{k}{t}t}}$

We hope that $t\to \infty$ will get the results we want: Fourier transforms are suitable for aperiodic functions. But the results proved that this is not feasible, and finally concluded: for any $c_k$, there are $c_k \leqslant \frac{m}{t}$, when $t \to \infty \, C_k \to 0$. $C _k$ is inversely proportional to $t$.

According to this relationship, can we introduce $t$ to $c_k$ side?

New Symbol $\eta$

Make

$\displaystyle{\eta f (\frac{k}{t}) =c_k \times T = \int_{-\frac{t}{2}}^{\frac{t}{2}}e^{-2\pi i \frac{k}{T}t}f (t) DT}$

That is,

$f (t) = \displaystyle{\sum_{k=-\infty}^{\infty}\eta f (\frac{k}{t}) e^{2\pi i\frac{k}{t}t} \frac{1}{t}}$

Now make $t \to \infty$, then $\frac{k}{t}$ 's value range is $ (\frac{k=-\infty}{t\to \infty},\frac{k=+\infty}{t\to \infty}) $, which is $ (-\infty, +\infty) $. The value interval is $\frac{1}{t} \to 0$, tending to continuous variables. Now use continuous variable $s$ to represent $\frac{k}{t}$:

$s = \frac{k}{t} \, –\infty < s < \infty$

$\eta f (s) = \displaystyle{\int_{-\infty}^{\infty}e^{-2\pi ist}f (t) DT}$

Since $\frac{k}{t}$ is replaced with a continuous variable $s$, the polynomial of the Fourier series is replaced with integral, where $\frac{1}{t}$ is $\bigtriangleup S $, which is $ds$

$f (t) = \displaystyle{\int_{-\infty}^{\infty}\eta f (s) e^{2\pi Ist}ds}$

Conclusion (definition)

If the period of $f (t) $ is defined in the entire real number field, i.e. $-\infty < T < \infty$, then its

Fourier transform:

$\eta f (s) = \displaystyle{\int_{-\infty}^{\infty} e^{-2\pi ist}f (t) DT}$

Fourier inverse transformation:

$f (t) = \displaystyle{\int_{-\infty}^{infty}e^{2\pi IS0} \eta F (s) DS}$

You can also write the following form:

$\eta f (s) = \displaystyle{\int_{-\infty}^{\infty} e^{-2\pi ist}f (t) DT}$

$\eta^{-1}g (t) = \displaystyle{\int_{-\infty}^{infty}e^{2\pi ist}g (s) DS}$

The symbol $\eta$ represents the Fourier transform, and the $\eta^{-1}$ represents the inverse Fourier transform.

The Fourier transform function is decomposed into continuous complex exponent, and the Fourier inverse transform combines these successive complex exponents into the original function.

0-point value

$\eta F (0) = \displaystyle{\int_{-\infty}^{\infty} e^{-2\pi i0t}f (t) dt = \int_{-\infty}^{\infty}f (t) DT} $

$\eta^{-1}g (0) = \displaystyle{\int_{-\infty}^{infty}e^{2\pi IS0} g (s) ds = \int_{-\infty}^{infty}g (s) DS}$

Fourier Transform Example 1. Rectangle function

$\PI (t) =
\left\{\begin{matrix}
1 & \left| T \right| < \frac{1}{2}\\
0 & \left| T \right| \geqslant \frac{1}{2}
\end{matrix}\right.$

The Fourier transform is as follows:

$\begin{align*}
\eta \pi (s)
&= \displaystyle{\int_{-\infty}^{\infty}e^{-2\pi ist}\pi (t) dt} \ \
&= \displaystyle{\int_{-\frac{1}{2}}^{\frac{1}{2}}e^{-2\pi Ist}dt} \ \
&= \left. -\frac{1}{2\pi is}e^{-2\pi ist} \right |_{\frac{1}{2}}^{\frac{1}{2}} \ \
&=-\frac{1}{2\pi is}e^{-2\pi Is\frac{1}{2}}-(-\frac{1}{2\pi Is}e^{-2\pi is (-\frac{1}{2})}) \ \
&=-\frac{1}{2\pi Is}e^{-\pi is} + \frac{1}{2\pi is}e^{\pi is} \ \
&= \frac{1}{\pi S} (\frac{e^{\pi is}-e^{-\pi is}}{2i}) \ \
&= \frac{1}{\pi S} (\frac{cos (\pi s) +isin (\pi s)-cos (-\pi s)-Isin (-\pi s)}{2i}) \ \
&= \frac{1}{\pi S} (\frac{2isin (\pi s)}{2i}) \ \
&= \frac{sin (\pi s)}{\pi s} \ \
&= sinc \ S
\end{align*}$

This function is called the $sinc$ function

2. Triangle function

$\lambda (t) =
\left\{\begin{matrix}
1-\left|t\right| & \left|t\right|<1 \ \
0 & \left|t\right| \geqslant 1
\end{matrix}\right.$

The Fourier transform is as follows:

\begin{align*}\eta\lambda (s)
&= \displaystyle{\int_{-\infty}^{\infty}e^{-2\pi ist}\lambda (t) dt}\\
&=\displaystyle{\int_{-1}^{0}e^{-2\pi ist} (1+t) dt + \int_{0}^{1}e^{-2\pi ist} (1-t) dt}\\
&=\left (\left. ( 1+t) (-\frac{2\pi is}{1}e^{-2\pi ist}) \right|_{-1}^0-\displaystyle{\int_{-1}^{0}-\frac{1}{2\pi is}e^{-2\pi Ist}dt}\ right) +\left (\left. ( 1-T) (-\frac{2\pi is}{1}e^{-2\pi ist}) \right|_{0}^1-\displaystyle{\int_{0}^{1}-\frac{1}{2\pi is}e^{-2\pi Ist}dt}\ right) \ \
&=\left (-\frac{1}{2\pi is}-\left. \frac{1}{4\pi^2i^2s^2}e^{-2\pi ist}\right|_{-1}^{0}\right) +\left (\frac{ 1}{2\pi Is}+\left. \frac{1}{4\pi^2i^2s^2}e^{-2\pi ist}\right|_{0}^{1}\right) \ \
&=-\left (\frac{1}{-4\pi^2s^2}-\frac{1}{-4\pi^2s^2}e^{2\pi is}\right) +\left (\frac{1}{-4\pi^2s^2}e^{-2\pi is}-\frac{1}{-4\pi^2s^2}\right) \ \
&=\frac{-2+cos (2\pi s) +isin (2\pi s) +cos ( -2\pi s) +isin ( -2\pi s)}{-4\pi^2s^2}\\
&=\frac{-2+2cos (2\pi s)}{-4\pi^2s^2}\\
&=\frac{-4cos^2 (\pi s)}{-4\pi^2s^2}\\
&=\frac{cos^2 (\pi s)} {(\pi s) ^2}\\
&=sinc^2s
\end{align*}

[Fourier transform and its application study notes] six. Thermal equation discussion

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.