HDU 2586 how far away? (Beginner's LCA)

Source: Internet
Author: User

How far away? Time limit:2000/1000 MS (java/others) Memory limit:32768/32768 K (java/others)
Total submission (s): 7739 Accepted Submission (s): 2769


Problem Descriptionthere is n houses in the village and some bidirectional roads connecting them. Every day peole "What is it if I am want to go from House A to house B"? Usually it hard to answer. But luckily int this village the answer was always unique, since the roads was built in the the-the-the-that-there is a unique simp Le path ("simple" means you can ' t visit a place twice) between every the houses. Yout task is to answer all these curious people.
Inputfirst line was a single integer T (t<=10), indicating the number of test cases.
For each test case,in the first line there is the numbers N (2<=n<=40000) and M (1<=m<=200), the number of hous Es and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning this there is a road con Necting House I and House j,with length K (0<k<=40000). The houses is labeled from 1 to N.
Next m lines each have distinct integers i and j, you areato answer the distance between House I and House J.
Outputfor each test case,output m lines. Each line represents the answer of the query. Output a bland line after all test case.
Sample Input
23 21 2 103 1 151 22 32 21 2 1001 22 1

Sample Output
1025100100


Approximate test instructions: Finding the distance between any two points in the tree is obviously the distance from the u,v to the root, minus the distance from their LCA to the root.


As a result of the study of LCA, three LCA methods have been used to find


Method one: Off-line algorithm Tarjan

#include <cstdio> #include <iostream> #include <cstring> #include <algorithm>using namespace std;const int N = 40000+1000;int head[n];int fst[n];struct edge{int v,w,nxt,id;} Es[n<<1],qury[444];int cnt,qc;int ans[222];int fa[n],ance[n];void inline add_query (int u,int v,int ID) {QURY[QC].    V=v;    Qury[qc].id=id;    Qury[qc].nxt=fst[u];    fst[u]=qc++;    Qury[qc].v=u;    Qury[qc].id=id;    QURY[QC].NXT=FST[V]; fst[v]=qc++;}    void inline Add_edge (int u,int v,int W) {es[cnt].w=w;    Es[cnt].v=v;    Es[cnt].nxt=head[u];    head[u]=cnt++;    Es[cnt].v=u;    Es[cnt].w=w;    ES[CNT].NXT=HEAD[V]; head[v]=cnt++;} int N,m;bool vis[n];int GETF (int x) {return x==fa[x]? X:FA[X]=GETF (Fa[x]);} void Merge (int u,int v) {fa[getf (U)]=getf (v);}    void LCA (int u,int pa) {ance[u]=fa[u]=u;        for (int i=head[u];~i;i=es[i].nxt) {int v=es[i].v;        if (V==PA) continue;        LCA (V,u);        Merge (U,V);    ANCE[GETF (v)]=u;    } vis[u]=1; for (int i=fST[U];~I;I=QURY[I].NXT) {int v=qury[i].v;    if (Vis[v]) ans[qury[i].id]=ance[getf (v)];        }}int dp[n];void MAKEDP (int u,int pa) {for (int i=head[u];~i;i=es[i].nxt) {int v=es[i].v,w=es[i].w;        if (V==PA) continue;        Dp[v]=dp[u]+w;    MAKEDP (V,u);    }}void Ini () {memset (head,-1,sizeof (head));    memset (fst,-1,sizeof (FST));    cnt=qc=0; memset (vis,0,sizeof (Vis));}    int main () {int T;    scanf ("%d", &t);        while (t--) {ini ();        scanf ("%d%d", &n,&m);            for (int i=1;i<n;i++) {int u,v,w;            scanf ("%d%d%d", &u,&v,&w);        Add_edge (U,V,W);            } for (int i=1;i<=m;i++) {int u,v;            scanf ("%d%d", &u,&v);        Add_query (U,v,i);        } LCA (a);        MAKEDP (a);            for (int i=0;i<m;i++) {int j=i<<1;        printf ("%d\n", Dp[qury[j].v]+dp[qury[j^1].v]-2*dp[ans[i+1]]);  }  } return 0;} 

Method Two: BFs Multiplication hop Table algorithm

#include <cstdio> #include <iostream> #include <cstring> #include <queue> #include < algorithm>using namespace Std;const int N = 40000+1000;int head[n];struct edge{int v,w,nxt;}    Es[n<<1];int cnt;inline void Add_edge (int u,int v,int W) {es[cnt].v=v;    Es[cnt].w=w;    Es[cnt].nxt=head[u];    head[u]=cnt++;    Es[cnt].v=u;    Es[cnt].w=w;    ES[CNT].NXT=HEAD[V]; head[v]=cnt++;}    int dp[n];int dep[n];bool vis[n];int pa[n][20];void bfs () {queue<int>q;    Q.push (1);    Pa[1][0]=1;    Vis[1]=1;        while (!q.empty ()) {int U=q.front (); Q.pop ();        for (int i=1;i<20;i++) pa[u][i]=pa[pa[u][i-1]][i-1];            for (int i=head[u];~i;i=es[i].nxt) {int v=es[i].v,w=es[i].w;                if (vis[v]==0) {vis[v]=1;                Dp[v]=dp[u]+w;                Pa[v][0]=u;                dep[v]=dep[u]+1;            Q.push (v); }}}}int LCA (int u,int v) {if (Dep[u]>dep[v]) Swap (U, v);    for (int det=dep[v]-dep[u],i=0;det;i++,det>>=1) if (det&1) v=pa[v][i];    if (v==u) return v;    for (int i=20-1;i>=0;i--) if (Pa[u][i]!=pa[v][i]) v=pa[v][i],u=pa[u][i]; return pa[u][0];}    int n,m;void ini () {memset (head,-1,sizeof (head));    cnt=0;    memset (vis,0,sizeof (VIS)); dp[1]=0;}    int main () {int T;    scanf ("%d", &t);        while (t--) {scanf ("%d%d", &n,&m);        INI ();            for (int i=1;i<n;i++) {int u,v,w;            scanf ("%d%d%d", &u,&v,&w);        Add_edge (U,V,W);        } BFS ();            for (int i=1;i<=m;i++) {int u,v;            scanf ("%d%d", &u,&v);            int LCAV = LCA (u,v);            int ans = DP[U]+DP[V]-2*DP[LCAV];        printf ("%d\n", ans); }} return 0;}


Method Three: DFS-based RMQ

#include <cstdio> #include <iostream> #include <cstring> #include <queue> #include < algorithm>using namespace Std;const int N = 40000+1000;int head[n];struct edge{int v,w,nxt;}    Es[n<<1];int cnt;inline void Add_edge (int u,int v,int W) {es[cnt].v=v;    Es[cnt].w=w;    Es[cnt].nxt=head[u];    head[u]=cnt++;    Es[cnt].v=u;    Es[cnt].w=w;    ES[CNT].NXT=HEAD[V]; head[v]=cnt++;}    int dp[n];int index;int vs[n*3],id[n],dep[n];int lca[n*3][20];bool vis[n];void dfs (int u,int h) {vis[u]=1;    Id[u]=++index;    Vs[index]=u;    Dep[u]=h;        for (int i=head[u];~i;i=es[i].nxt) {int v=es[i].v,w=es[i].w;        if (Vis[v]) continue;        Dp[v]=dp[u]+w;        DFS (V,H+1);    Vs[++index]=u;    }}int mm[n];void Ini () {memset (vis,0,sizeof (VIS));    memset (head,-1,sizeof (head));    cnt=index=0; dp[1]=0;}    int N,m;int Main () {mm[0]=-1; for (int i=1;i<=n-1;i++) mm[i]= (((i-1) &i) ==0)?    MM[I-1]+1:MM[I-1];    int T;    scanf ("%d", &t); WhiLe (t--) {scanf ("%d%d", &n,&m);        INI ();            for (int i=1;i<n;i++) {int u,v,w;            scanf ("%d%d%d", &u,&v,&w);        Add_edge (U,V,W);        } dfs (1,0);        for (int i=1;i<=index;i++) lca[i][0]=vs[i]; for (int j=1;j<20;j++) for (int i=1;i+ (1&LT;&LT;J) -1<=index;i++) {int a=lca[i][j                -1],b=lca[i+ (1<< (j-1))][j-1]; LCA[I][J] = dep[a]<dep[b]?            A:B;            } for (int i=1;i<=m;i++) {int u,v;            scanf ("%d%d", &u,&v);            int l=min (id[u],id[v]);            int R=max (id[u],id[v]);            int k=mm[r-l+1];            int a=lca[l][k],b=lca[r-(1<<k) +1][k]; int lcav = Dep[a]<dep[b]?            A:B;            int ans = DP[U]+DP[V]-2*DP[LCAV];        printf ("%d\n", ans); }} return 0;}



Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.

HDU 2586 how far away? (Beginner's LCA)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.