Topic Connection
http://acm.hdu.edu.cn/showproblem.php?pid=3999
The order of a treedescription
As we know,the shape of a binary search tree is greatly related to the order of keys we insert. To be precisely:
1. Insert a key k to a empty tree and then the tree become a tree with
only one node;
2. Insert a key k to a nonempty tree, if K was less than the root, insert
It to the left Sub-tree;else inserts K to the right sub-tree.
We call the order of keys we insert "the Order of a tree", your task Is,given a oder of a tree, find the order of a tree WI Th the least lexicographic order that generate the same tree. The trees is the same if and only if they has the same shape.
Input
There is multiple test cases in an input file. The first line of each testcase are an integer $n (n \leq 100,000) $,represent the number of nodes. The second line had n intergers,k1 to kn,represent the order of a tree. To do if more simple, K1 to kn are a sequence of 1 to N.
Output
One line with n Intergers, which is the order of a tree that generate the same tree with the least lexicographic.
Sampleinput
4
1 3 4 2
Sampleoutput
1 3 2 4
Brush some water questions to pass the time.
1#include <algorithm>2#include <iostream>3#include <cstdlib>4#include <cstring>5#include <cstdio>6#include <vector>7#include <map>8#include <Set>9 usingstd::cin;Ten usingstd::cout; One usingStd::endl; A usingStd::find; - usingSTD::Set; - usingStd::map; the usingstd::p air; - usingstd::vector; - usingStd::multiset; - usingStd::multimap; + #defineSZ (c) (int) (c). Size () - #defineAll (c) (c). Begin (), (c). End () + #defineITER (c) Decltype ((c). Begin ()) A #defineCLS (arr,val) memset (arr,val,sizeof (arr)) at #defineCpresent (c, E) (Find (All (c), (e))! = (c). End ()) - #defineRep (i, n) for (int i = 0; i < (int) (n); i++) - #defineTR (c, I) for (ITER (c) i = (c). Begin (); I! = (c). end (); ++i) - #definePB (E) push_back (e) - #defineMP (A, b) Make_pair (A, B) - Const intMax_n =100100; intypedef unsignedLong Longull; - structNode { to intv; +Node *ch[2]; -InlinevoidSETC (int_v, Node *p) { thev =_v; *ch[0] = ch[1] =p; $ }Panax Notoginseng }; - structBST { theNode *root, *NULL, *tail; + Node Stack[max_n]; AInlinevoidinit () { theTail = &stack[0]; + NULL= tail++; - NULL->SETC (0, NULL); $Root =NULL; $ } -Inline Node *newnode (intv) { -Node *p = tail++; theP->setc (V,NULL); - returnp;Wuyi } theInlinevoidInsert (Node *&x,intv) { - if(x = =NULL) {x = NewNode (v);return; } WuInsert (X->ch[v > x->v], v); - } AboutInlinevoidDFS (vector<int> &res, Node *x) { $ if(X! =NULL) { -RES.PB (x->v); -DFS (res, x->ch[0]); -DFS (res, x->ch[1]); A } + } theInlinevoidInsertintv) { - Insert (root, v); $ } theInlinevoidGo () { thevector<int>Res; the Dfs (res, root); the intn =sz (res); -Rep (i, N) printf ("%d%c", Res[i], I < n-1?' ':'\ n'); in } the }bst; the intMain () { About #ifdef LOCAL theFreopen ("In.txt","R", stdin); theFreopen ("OUT.txt","w+", stdout); the #endif + intN, v; - while(~SCANF ("%d", &N)) { the bst.init ();BayiRep (i, N) scanf ("%d", &v), Bst.insert (v); the bst.go (); the } - return 0; -}
View Code
HDU 3999 The order of a Tree