Red/blue Spanning TreeTime
limit:10000/2000 MS (java/others) Memory limit:131072/131072 K (java/others)
Total submission (s): 979 Accepted Submission (s): 368
Problem Descriptiongiven an undirected, unweighted, connected graph, where each edge is colored either blue or red, determ Ine whether a spanning tree with exactly
kBlue edges exists.
Inputthere'll is several test cases in the input. Each test case would begin with a line with three integers:
N M k
Where
N(2≤
N≤1,000) is the number of nodes in the graph,
m(limited by the structure of the graph) are the number of edges in the graph, and
k(0≤
k<
N) is the number of the blue edges desired in the spanning tree.
Each of the next
mLines would contain three elements, describing the edges:
C F t
Where
Cis a character, either capital '
R' or capital '
B', indicating the color of the edge, and
Fand
Tis integers (1≤
F,
T≤
N,
T≠
Findicating the nodes that edge goes from and to. The graph is guaranteed to being connected, and there is guaranteed to being at the most one edge between any pair of nodes.
The input would end with a line with three 0s.
Outputfor each test case, output single line, containing 1 if it's possible to build a spanning tree with exactly
kBlue edges, and 0 if it is not possible. Output no extra spaces, and do not separate answers with blank lines.
Sample Input
3 3 2B 1 2B 2 3R 3 1 1R 1 20 0 0
Sample Output
10
Sourcethe University of Chicago Invitational programming Contest 2012
recommendliuyiding | We have carefully selected several similar problems for you:4257 4258 4260 4261 4262
Set Red edge to 2, Blue edge to 1, and MST to maximum blue edge number
The least number of blue edges to see if k is in the interval
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include < functional> #include <iostream> #include <cmath> #include <cctype> #include <ctime>using namespace std; #define for (I,n) for (int. i=1;i<=n;i++) #define FORK (I,k,n) for (int. i=k;i<=n;i++) #define REP (I,n) for (int i=0;i<n;i++) #define ForD (I,n) for (int. i=n;i;i--) #define REPD (I,n) for (int. i=n;i>=0;i--) #define FORP (x) for ( int p=pre[x];p; p=next[p]) #define LSON (x<<1) #define Rson ((x<<1) +1) #define MEM (a) memset (A,0,sizeof (a)); Define Memi (a) memset (A,127,sizeof (a)), #define MEMI (a) memset (A,128,sizeof (a)), #define INF (2139062143) #define F ( 100000007) #define MAXN (3*2000+10) #define MAXM (10000000+10) long long mul (long long A,long long B) {return (a*b)%F;} Long Long (long A,long long B) {return (a+b)%F;} Long Long sub (long A,long long B) {return (a-b+ (a)/f*f+f)%F;} typedef long Long Ll;class bingchaji{public:int father[maxn],n; void Mem (inT _n) {n=_n; for (i,n) father[i]=i; } int Getfather (int x) {if (father[x]==x) return x; Return Father[x]=getfather (Father[x]); } void Unite (int x,int y) {father[x]=getfather (father[x]); Father[y]=getfather (Father[y]); Father[father[x]]=father[father[y]]; } bool Same (int x,int y) {return getfather (x) ==getfather (y); }}s;int n,m,k;struct edge{int a,b,c; Edge () {} edge (int _x,int _y,int _c): A (_x), B (_y), C (_c) {} friend bool operator< (Edge A,edge b) {return A.C<B.C;} }e[maxm];int kr () {S.MEM (n); Sort (e+1,e+1+m); int ans1=0,t=0; for (I,M) if (! S.same (e[i].a,e[i].b)) {s.unite (e[i].a,e[i].b), ans1+=e[i].c,++t; cout<<e[i].a<< ' <<e[i].b<< ' <<e[i].c<<endl; } if (t<n-1) return-1; return ans1;} int main () {//Freopen ("G.in", "R", stdin); Freopen (". Out", "w", stdout); while (cin>>n>>m>>k) {if (n+m+k==0) return 0; S.mem (n); for (i,m) {char c;int a,b,t; scanf ("\n%c%d%d", &c,&a,&b); if (c== ' B ') T=1;else t=2; E[i]=edge (a,b,t); } int t1=kr (); for (i,m) e[i].c=3-e[i].c; int T2=kr ();//cout<<t1<< ' <<t2<<endl; if (t1!=-1) {t1=t1-(n-1); T1=N-1-T1; t2=t2-(n-1); cout<<t1<< ' <<t2<<endl; if (t1>=k&&t2<=k) {cout<< "1\n"; Continue }} cout<< "0\n"; } return 0;}
Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.
HDU 4263 (red/blue Spanning tree-take edge greedy)