HDU-6172: array Challenge (BM linear recursion)

Source: Internet
Author: User

Question:Given, there are three functions, H, B, A, and then t queries. Each time n is given, SQRT (an) is obtained );

Ideas:I don't know how to push it, but I feel that a should be linear. At this time, we can use BM linear recursion to find the first few items and put them in the template. Then we can find them.

The data range is 1e15, and 1000 groups can all be in seconds.

The main problem is to ensure that the data is linear and the first few items must be obtained.

#include<bits/stdc++.h>using namespace std;#define rep(i,a,n) for (int i=a;i<n;i++)#define per(i,a,n) for (int i=n-1;i>=a;i--)#define pb push_back#define mp make_pair#define all(x) (x).begin(),(x).end()#define fi first#define se second#define SZ(x) ((int)(x).size())typedef vector<int> VI;typedef long long ll;typedef pair<int,int> PII;const ll mod=1000000007;ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}ll n;namespace linear_seq {    const int N=10010;    ll res[N],base[N],_c[N],_md[N];    vector<int> Md;    void mul(ll *a,ll *b,int k) {        rep(i,0,k+k) _c[i]=0;        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;        for (int i=k+k-1;i>=k;i--) if (_c[i])            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;        rep(i,0,k) a[i]=_c[i];    }    int solve(ll n,VI a,VI b) {        ll ans=0,pnt=0;        int k=SZ(a);        assert(SZ(a)==SZ(b));        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;        Md.clear();        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);        rep(i,0,k) res[i]=base[i]=0;        res[0]=1;        while ((1ll<<pnt)<=n) pnt++;        for (int p=pnt;p>=0;p--) {            mul(res,res,k);            if ((n>>p)&1) {                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;            }        }        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;        if (ans<0) ans+=mod;        return ans;    }    VI BM(VI s) {        VI C(1,1),B(1,1);        int L=0,m=1,b=1;        rep(n,0,SZ(s)) {            ll d=0;            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;            if (d==0) ++m;            else if (2*L<=n) {                VI T=C;                ll c=mod-d*powmod(b,mod-2)%mod;                while (SZ(C)<SZ(B)+m) C.pb(0);                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;                L=n+1-L; B=T; b=d; m=1;            } else {                ll c=mod-d*powmod(b,mod-2)%mod;                while (SZ(C)<SZ(B)+m) C.pb(0);                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;                ++m;            }        }        return C;    }    int gao(VI a,ll n) {        VI c=BM(a);        c.erase(c.begin());        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));    }};int main() {    int T; scanf("%d",&T);    while(T--){        scanf("%lld",&n);        printf("%lld\n", linear_seq::gao(VI{31,197,1255,7997,50959,324725,2069239,13185773,84023455,535421093,411853810},n-2))
; }}//

 

 

For example, hdu6185 is obviously linear. We use a 16*16 matrix to perform T. I can use the pressure DP to obtain the first few items and then set this one.

#include<bits/stdc++.h>using namespace std;#define rep(i,a,n) for (int i=a;i<n;i++)#define per(i,a,n) for (int i=n-1;i>=a;i--)#define pb push_back#define mp make_pair#define all(x) (x).begin(),(x).end()#define fi first#define se second#define SZ(x) ((int)(x).size())typedef vector<int> VI;typedef long long ll;typedef pair<int,int> PII;const ll mod=1000000007;ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}ll _,n;namespace linear_seq {    const int N=10010;    ll res[N],base[N],_c[N],_md[N];    vector<int> Md;    void mul(ll *a,ll *b,int k) {        rep(i,0,k+k) _c[i]=0;        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;        for (int i=k+k-1;i>=k;i--) if (_c[i])            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;        rep(i,0,k) a[i]=_c[i];    }    int solve(ll n,VI a,VI b) {        ll ans=0,pnt=0;        int k=SZ(a);        assert(SZ(a)==SZ(b));        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;        Md.clear();        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);        rep(i,0,k) res[i]=base[i]=0;        res[0]=1;        while ((1ll<<pnt)<=n) pnt++;        for (int p=pnt;p>=0;p--) {            mul(res,res,k);            if ((n>>p)&1) {                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;            }        }        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;        if (ans<0) ans+=mod;        return ans;    }    VI BM(VI s) {        VI C(1,1),B(1,1);        int L=0,m=1,b=1;        rep(n,0,SZ(s)) {            ll d=0;            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;            if (d==0) ++m;            else if (2*L<=n) {                VI T=C;                ll c=mod-d*powmod(b,mod-2)%mod;                while (SZ(C)<SZ(B)+m) C.pb(0);                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;                L=n+1-L; B=T; b=d; m=1;            } else {                ll c=mod-d*powmod(b,mod-2)%mod;                while (SZ(C)<SZ(B)+m) C.pb(0);                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;                ++m;            }        }        return C;    }    int gao(VI a,ll n) {        VI c=BM(a);        c.erase(c.begin());        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));    }};int main() {    while(~scanf("%lld",&n)){        printf("%d\n",linear_seq::gao(VI{1,5,11,36,95,281,781,2245},n-1));    }}

 

HDU-6172: array Challenge (BM linear recursion)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.