1. The interval is a section, not disconnected yo
2. The code is written in the view of the standard
3. Enumerate the left endpoint, the binary right end-point process:
#include <cstdio> #include <cstring> #include <cmath> #define LL long Long#define Max (a) (a) > (b)? ( A):(B) #define MIN (a) < (b) ( A):(B)) using namespace Std;const int n=200007;int minn[n][20];//2^18=262144 2^20=1048576int maxx[n][20];//----------- -----------Query O (1)-------------int querymin (int l,int r) {int K=floor (log2 (double) (r-l+1)),//2^k <= (r-l + 1), Flo The OR () takes the whole function down to return Min (minn[l][k],minn[r-(1<<k) +1][k]);} int Querymax (int l,int r) {int K=floor (log2 (double) (r-l+1)); Return Max (maxx[l][k],maxx[r-(1<<k) +1][k]);} -------------------------------------------------int calc (int l,int r) {int k=log2 ((double) (r-l+1)); int Max=max (maxx[l][k],maxx[r-(1<<k) +1][k]); int Min=min (minn[l][k],minn[r-(1<<k) +1][k]); return max-min;} int main () {int T; int n,k,i,j,p; LL ans; scanf ("%d", &t); while (t--) {scanf ("%d%d", &n,&k); for (I=1; i<=n; ++i) {scanf ("%d",&J); Minn[i][0]=maxx[i][0]=j; }//------------------------------------------pretreatment o (nlogn)---------------for (j=1; (1<<J) <=n; ++J)//1<<j==2^j, enumeration interval length 1,2,4,8,16,,,,, for (I=1; i+ (1<<j) -1<=n; ++i)//i+ (1<<j)-1 denotes interval right boundary, enumeration interval Left Border {p= (1<< (j-1)); Minn[i][j]=min (Minn[i][j-1],minn[i+p][j-1]); Maxx[i][j]=max (Maxx[i][j-1],maxx[i+p][j-1]); }//-----------------------------------------------------------------------//---------------------------Enumerate the left endpoint, The two-point right endpoint---------------------------int l,r,mid; The ans=0;//left endpoint is fixed to I, the right endpoint is determined with L,r,mid, and finally with one of L and R, at this time l+1==r for (i=1; i<=n; ++i) {l=i,r=n; while (L+1<r) {mid= (l+r) >>1;//(l+r)/2== (l+r) >>1 if (Calc (i,mid) &L t;k) {l=mid; } else {r=Mid-1;//himself to demonstrate the algorithm flow know that R can be assigned Mid-1}} if (Calc (i,r) <k) {ans =ans+ (LL) (r-i+1); } else {ans=ans+ (LL) (l-i+1); }}//---------------------------------------------------------------------------printf ("%lld\n", ans); } return 0;}
Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.
Hdu 5289 Assignment (to an array, how many intervals to satisfy the difference between the maximum and minimum values in the interval is less than k)