Problem Description
A quotient that divides two large positive integers
input Data
Line 1th is the number of groups of test data N, each group of test data accounted for 2 rows, the 1th row is the divisor, and the 2nd line is the divisor.
There is a blank line between each set of test data, with no more than 100 characters per row of data
Output Requirements
n rows, each set of test data has a row of output is the corresponding integer quotient
Thinking of solving problems
The basic idea is to do the subtraction repeatedly, to see how many divisor can be subtracted from the divisor, quotient is how much. A one-off is obviously too slow, how to reduce it faster? Take 7546 divided by 23 For example: Starting quotient is 0. Minus 23 of 100 times times, is 2300, found enough to reduce 3 times, the remaining 646. The quotient value is increased by 300. Then 646 minus 230, found to reduce 2 times, the remaining 186, so the value of the quotient increased by 20. Finally, 186 minus 23, 8 times, so the final quotient is 328. So the core of the subject is to write a subtraction function of a large integer, and then repeatedly call the function to do subtraction
Code Implementation
#include <stdio.h>#include <stdlib.h>#include <string.h>#include <stdbool.h>#define Max_lenintX[max_len + -], Y[max_len + -], Z[max_len + -];CharA[max_len + -], B[max_len + -];voidDebug_print (Const intX[],intLen) {intI for(i =0; i < Len; i++)printf("%d", X[i]);printf("\ n");}voidChar_to_int (Const CharS[],intX[]) {inti =0;intLen =strlen(s);memset(X,0, Max_len + -);intj =0; for(i = len-1; I >=0; i--) {x[j++] = s[i]-' 0 '; }}intCal_length (Const intX[]) {inti =0;intCount =0; for(i = Max_len-1; I >=0; i--) {if(X[i]) {count = i +1; Break; } }returnCount;}intBig_int_sub (intX[],Const intY[]) {inti =0;Const intLenx = Cal_length (x);Const intLeny = Cal_length (y);//Determine if x is greater than Y if(Lenx < Leny)return-1;Else if(Lenx = = Leny) { for(i = Lenx-1; I >=0; i--) {if(X[i] < y[i])return-1;Else if(X[i] = = Y[i])Continue;Else Break; } }//bit-wise to reduce for(i =0; i < Max_len; i++) {X[i] = X[i]-y[i];if(X[i] <0) {X[i] = X[i] +Ten; X[i +1] --; } }return 1;}voidBig_int_div (intX[],Const intY[],intZ[]) {intI, j =0;int*copy_y = NULL;memset(Z,0, Max_len + -);Const intLenx = Cal_length (x);intLeny = Cal_length (y);inttimes = Lenx-leny; Copy_y = (int*)malloc(sizeof(int) * Max_len);memcpy(Copy_y, Y,sizeof(int) * Max_len);//Move the copied copy_y to the right times, equal to the length of x for(i = Lenx-1; I >=0; i--) {if(I >= times) copy_y[i] = Copy_y[i-times];ElseCopy_y[i] =0;//Low fill 0}//x start to reduce copy_y, minus enough to reduce, and then subtract copy_y right shift times-1 bit until the end is not reducedLeny = Lenx; for(i =0; I <= times; i++) { while(Big_int_sub (x, copy_y) >=0) Z[times-i] + +;//copy_y left shift one is y right shift times-1 bit for(j =1; J < Leny; J + +) Copy_y[j-1] = Copy_y[j]; Copy_y[--leny] =0; } for(i =0; i < Max_len; i++) {if(Z[i] >=Ten) {z[i +1] + = Z[i]/Ten; Z[i] = z[i]%Ten; } }}voidBig_int_print (Const intZ[]) {BOOLFlag =0;inti =0; for(i = Max_len; I >=0; i--) {if(flag)printf("%d", Z[i]);Else if(Z[i]) {printf("%d", Z[i]); Flag =1; } }if(!flag)printf("0");printf("\ n");}intMain () {intNscanf("%d", &n); while(n--) {scanf('%s ', a);scanf('%s ', b);intLen =0;intLenx =strlen(a);intLeny =strlen(b); len = Lenx-leny;if(Len <0)printf("0\n"); Char_to_int (A, x); Char_to_int (b, y); Big_int_div (x, y, z); Big_int_print (z); }return 0;}
High-precision Computing-Large integer division