Install the required packages
wants <- c("coin")has <- wants %in% rownames(installed.packages())if(any(!has)) install.packages(wants[!has])>
A sample test
set.seed(123)medH0 <- 30DV <- sample(0:100, 20, replace=TRUE)DV <- DV[DV != medH0]N <- length(DV)(obs <- sum(DV > medH0))
[1] 15
(pGreater <- 1-pbinom(obs-1, N, 0.5))
[1] 0.02069
(pTwoSided <- 2 * pGreater)
[1] 0.04139
Wilcoxon Row Inspection
IQ <- c(99, 131, 118, 112, 128, 136, 120, 107, 134, 122)medH0 <- 110
wilcox.test(IQ, alternative="greater", mu=medH0, conf.int=TRUE)
- Wilcoxon signed Rank test
- Data:iq
- V = , p-value = 0.01855
- Alternative hypothesis: true location is greater than
- percent Confidence interval:
- 113.5 Inf
- Sample estimates:
- (pseudo) Median
- 121
Two independent sample tests
Nj <- c(20, 30)DVa <- rnorm(Nj[1], mean= 95, sd=15)DVb <- rnorm(Nj[2], mean=100, sd=15)wIndDf <- data.frame(DV=c(DVa, DVb), IV=factor(rep(1:2, Nj), labels=LETTERS[1:2]))
View the number of cases in each group that are below or above the median of the combined data.
library(coin)median_test(DV ~ IV, distribution="exact", data=wIndDf)
- Exact Median Test
- Data: DV by IV (A, B)
- Z = 1.143, p-value = 0.3868
- Alternative hypothesis: true mu isn't equal to 0
Wilcoxon rank and test (Mann-Whitney Quarantine)
wilcox.test(DV ~ IV, alternative="less", conf.int=TRUE, data=wIndDf)
-
- wilcoxon rank sum test
-
- data : DV by IV
- w = 202, P-value = 0.02647
- alternative hypothesis : true location shift is less than 0 /span>
- 95 percent confidence interval:
- -inf -1.771
- sample estimates:
- difference in location
- -9.761
- library (coin)
- wilcox_test (DV ~ IV, alternative= "less", Conf.int=true,
- distribution= "exact", DATA=WINDDF)
- Exact Wilcoxon Mann-whitney Rank Sum Test
- Data: DV by IV (A, B)
- Z = -1.941, p-value = 0.02647
- Alternative hypothesis: true mu is less than 0
- percent Confidence interval:
- -inf -1.771
- Sample estimates:
- Difference in location
- -9.761
Two dependent sample tests
N <- 20DVpre <- rnorm(N, mean= 95, sd=15)DVpost <- rnorm(N, mean=100, sd=15)wDepDf <- data.frame(id=factor(rep(1:N, times=2)), DV=c(DVpre, DVpost), IV=factor(rep(0:1, each=N), labels=c("pre", "post")))
medH0 <- 0DVdiff <- aggregate(DV ~ id, FUN=diff, data=wDepDf)(obs <- sum(DVdiff$DV < medH0))
[1] 7
(pLess <- pbinom(obs, N, 0.5))
[1] 0.1316
ranking WilcoxonInspection
wilcoxsign_test(DV ~ IV | id, alternative="greater", distribution="exact", data=wDepDf)
- Exact Wilcoxon-signed-rank Test
- Data: y by x (neg, pos)
- stratified by block
- Z = 2.128, p-value = 0.01638
- Alternative hypothesis: true mu is greater than 0
Detach (Auto) load the package
try(detach(package:coin))try(detach(package:modeltools))try(detach(package:survival))try(detach(package:mvtnorm))try(detach(package:splines))try(detach(package:stats4))
How to perform two sets of independent sample rank and test in R language