In the project, the approximate value of asin (x) needs to be quickly solved. It was originally thought that using the Taylor expansion would be faster, and the result would be twice slower than the native one.
Math. Asin
Time elapsed: 9 ms
Gen 0: 0
Gen 1: 0
Gen 2: 0
Maclaurin. Asin
Time elapsed: 17 ms
Gen 0: 4
Gen 1: 0
Gen 2: 0
Ladies and gentlemen, who has the ability to improve?
Appendix:
Http://www.mathportal.org/formulas/pdf/taylor-series-formulas.pdf
Http://pages.pacificcoast.net /~ Cazelais/260/maclaurin.pdf
using System;using System.Collections.Generic;using System.Linq;using System.Runtime.Remoting.Messaging;using System.Text;using Diagnostics;namespace Asin{ class Program { static void Main(string[] args) { int count = 100000; List<double> values = new List<double>(count); Random r = new Random(); for (var i = 0; i <= count; ++i) { values .Add(r.NextDouble() * 2 - 1); } CodeTime.Init(); int? iter = 0; CodeTime.Timer("Math.ASin", count, () => { var i = iter.Value + 1; iter = i; Math.Asin(values[i]); }); iter = 0; CodeTime.Timer("Maclaurin.ASin", count, () => { var i = iter.Value + 1; iter = i; Maclaurin.Asin(values[i],3); }); while (true) { iter = 0; CodeTime.Timer("Math.ASin", count, () => { var i = iter.Value + 1; iter = i; Math.Asin(values[i]); }); iter = 0; CodeTime.Timer("Maclaurin.ASin", count, () => { var i = iter.Value + 1; iter = i; Maclaurin.Asin(values[i], 3); }); } //var ret = Maclaurin.Asin(0.5, 3); //var ret2 = Math.Asin(0.5); //Console.WriteLine(ret); //Console.WriteLine(ret2); Console.ReadLine(); } } class Maclaurin { class ASinImpl { private List<double> quotieties = new List<double>(); private IEnumerator<double> computeQuotieties = null; public ASinImpl() { this.computeQuotieties = ComputeQuotiety(); } public double Calc(double v, int precision = 2) { if (quotieties.Count < precision) { for (var i = quotieties.Count; i < precision; ++i) { computeQuotieties.MoveNext(); quotieties.Add(computeQuotieties.Current); } } double ret = 0; var values = ComputeValues(v); for (int i = 0; i < precision; ++i) { values.MoveNext(); ret += quotieties[i]*values.Current; } return ret; } private IEnumerator<double> ComputeValues(double v) { double ret = 1; double q = v*v; for(int i = 0;;++i) { if (i == 0) { ret = v; yield return ret; } else { ret *= q; yield return ret; } } throw new NotImplementedException(); } private IEnumerator<double> ComputeQuotiety() { for (int i = 0;; i++) { double up = Factorial(2*i); double down = Math.Pow(Math.Pow(2, i)*Factorial(i), 2)*(2*i + 1); double quotiety = up/down; yield return quotiety; } throw new NotImplementedException(); } private long Factorial(long v ) { if( v < 0) throw new ArgumentOutOfRangeException("v"); if (v == 0) return 1; if (v == 1) return 1; long ret = 1; for (int i = 2; i <= v; ++i) { ret *= i; } return ret; } } private static ASinImpl asinImpl = new ASinImpl(); /// <summary> /// /// </summary> /// <param name="v"></param> /// <param name="precision"></param> /// <returns></returns> public static double Asin(double v, int precision) { if (v < -1 || v > 1) { throw new ArgumentOutOfRangeException("v"); } return asinImpl.Calc(v, precision); } }}
Optimization: basically equal
class ASinImpl { private readonly int _precision; private double[] _quotieties = null; private long[] _factorials =null; public ASinImpl(int precision = 3) { _precision = precision; _quotieties = new double[precision + 1]; _factorials = new long[precision*2 + 1]; Factorial(precision); ComputeQuotiety(precision); } public double Calc(double v) { double retVal = 0; double vVal = 1; double q = v * v; for (int i = 0; i < _precision; ++i) { if (i == 0) { vVal = v; //yield return ret; retVal += _quotieties[i] * vVal; } else { vVal *= q; //yield return ret; retVal += _quotieties[i] * vVal; } } return retVal; } private void ComputeQuotiety(int precision) { for (int i = 0; i <= precision ; i++) { double up = _factorials[2 * i]; double down = Math.Pow(Math.Pow(2, i) * _factorials[i], 2) * (2 * i + 1); double quotiety = up / down; _quotieties[i] = quotiety; } } private void Factorial(int precision) { long ret = 1; for (long v = 0; v <= precision; ++v) { if (v == 0) this._factorials[v] = 1; if (v == 1) this._factorials[v] = 1; ret *= v; this._factorials[v] = ret; } } }
Implement the math. asin Mike laulin (Taylor) expansion. The result is twice slower than math. asin.