[Journal of mathematics at home University] 250th questions about the Postgraduate Entrance Exam of mathematics analysis at the University of Chinese Emy of Sciences in 2013

Source: Internet
Author: User
Tags cos

1 ($25 '$) calculation:

(1) ($10 '$) $ \ DPS {\ lim _ {n \ To \ infty} \ sin ^ 2 \ sex {\ pi \ SQRT {n ^ 2 + N }}$.

Answer: $ \ beex \ Bea \ mbox {Original limit} & =\ LiM _ {n \ To \ infty} \ sin ^ 2 \ sex {\ pi \ SQRT {n ^ 2 + n}-\ pi n }\\\&=\ LiM _ {n \ To \ infty} \ sin ^ 2 \ frac {\ pi n }{\ SQRT {n ^ 2 + n} + N }\\\&=\ sin ^ 2 \ sex {\ lim _ {n \ To \ infty} \ frac {\ PI} {\ SQRT {1 + \ frac {1} {n }}+ 1 }\\\\=\ sin ^ 2 \ frac {\ PI} {2 }\\& = 1. \ EEA \ eeex $

 

(2) ($ 15' $) $ \ DPS {\ lim _ {n \ To \ infty} a_n }$, where $ \ DPS {A_1 = 1, A _ {n + 1} = 1 + \ frac {1} {a_n} \ (n \ geq 1)} $.

Answer: Order $ A = (1 + \ SQRT {5})/2 $, then $ \ beex \ Bea | A _ {n + 1}-A | & =\ sev {\ frac {1} {A}-\ frac {1} {a_n} \ frac {| a_n-a |} {a_na} \ Leq \ frac {1} {A} | a_n-a | \ & \ Leq \ cdots \\ & \ Leq \ frac {1} {A ^ n} | a_1-a | \ & \ to 0 \ quad \ sex {n \ To \ infty }. \ EEA \ eeex $

 

2 ($ 15' $) set $ f (x) $ continuous, $ \ DPS {g (x) = \ int_0 ^ x F (x-T) \ sin t \ RD t} $, trial certificate: $ \ Bex g'' (x) + g (x) = f (x), \ quad g (0) = G' (0) = 0. \ EEx $

Proof: by $ \ Bex g (x) = \ int_0 ^ x F (x-T) \ sin t \ rd t = \ int_0 ^ x F (s) \ sin (X-S) \ RD s \ EEx $ Zhi $ \ Bex G' (x) = \ int_0 ^ x F (s) \ cos (X-S) \ rd s, \ quad g'' (x) = f (x)-\ int_0 ^ x F (s) \ sin (X-S) \ rd s. \ EEx $ then $ \ Bex g'' + G = F, \ quad g (0) = G' (0) = 0. \ EEx $

 

3 ($ 15' $) calculates the maximum curvature of the curve $ Y = e ^ x $.

Answer: curvature $ \ Bex \ Kappa (x) = \ frac {y''} {(1 + y' ^ 2) ^ {3/2 }}=\ frac {e ^ x} {(1 + e ^ {2x}) ^ {3/2 }}. \ EEx $ by $ \ Bex \ Kappa '(x) = \ frac {e ^ X (1-2e ^ {2x})} {(1 + e ^ {2x }) ^ {5/2 }}\ EEx $ $ \ Bex \ MAX \ Kappa = \ Kappa \ sex {-\ frac {\ ln 2} {2 }=\ frac {2 \ SQRT {3 }}{ 9 }. \ EEx $

 

4 ($2 \ times 15' = 30' $) Calculate points

(1) $ \ DPS {I =\int _ {1/4} ^ {1/2} \ RD Y \ int _ {1/2} ^ {\ SQRT {y} e ^ {Y/x} \ RD x + \ int _ {1/2} ^ 1 \ rd y \ int_y ^ {\ SQRT {y} e ^ {Y/x} \ RD x} $.

Answer: $ \ beex \ Bea I =\int _ {1/2} ^ 1 \ RD x \ int _ {x ^ 2} ^ x e ^ {Y/x} \ RD y = \ int _ {1/2} ^ 1 x (e-e ^ X) \ RD x = \ frac {3e-4 \ SQRT {e }}{ 8 }. \ EEA \ eeex $

 

(2) $ \ DPS {J = \ iint _ \ Omega | x ^ 2 + y ^ 2-1 | \ RD x \ RD y }, $ \ Bex \ Omega = \ sed {(x, y); \ 0 \ Leq x \ Leq 1, \ 0 \ Leq Y \ Leq 1 }. \ EEx $

Answer: $ \ beex \ Bea J & =\ int_0 ^ 1 \ RD x \ int_0 ^ {\ SQRT {^ 2} (^ 2-y ^ 2) \ RD y + \ int_0 ^ 1 \ RD x \ int _ {\ SQRT {3o^ 2 }}^ 1 (x ^ 2 + y ^ 2-1) \ RD y \\\\=\ frac {\ PI} {8} + \ sex {\ frac {\ PI} {8}-\ frac {1} {3 }}\ \ & =\ frac {\ PI} {4}-\ frac {1} {3 }. \ EEA \ eeex $

 

5 ($ 15' $) discusses the series $ \ DPS {\ sum _ {n = 1} ^ \ infty \ frac {n ^ 2} {(x + 1/n) ^ n }}$ convergence and consistent convergence (including the consistent convergence of inner and closed ).

Answer: by $ \ beex \ Bea \ lim _ {n \ To \ infty} \ sev {\ frac {(n + 1) ^ 2} {(x + 1/(n + 1) ^ {n + 1 }}{\ frac {n ^ 2} {(x + 1/n) ^ n }}& =\ LiM _ {n \ To \ infty} \ sev {\ sex {\ frac {x + 1/n} {x + 1/(n + 1 )}} ^ n \ frac {1} {x + 1/(n + 1 )}} \\<=\ frac {1 }{| x |}\ LiM _ {n \ To \ infty} \ frac {\ sex {1 + 1/(nx )} ^ {NX \ cdot 1/x} {\ SEZ {1 + 1/(n + 1) x)} ^ {(n + 1) X \ cdot N/(n + 1) x )}} \\&=\ frac {1 }{| x |}\ EEA \ eeex $ that is, when $ | x |> 1 $, the original series converges; original Series divergence when $ | x | <1 $; when $ x = 1 $, the original series is $ \ DPS {\ sum \ frac {n ^ 2} {(1 + 1/n) ^ n }}$ divergence (general items do not tend to $0 $ ); when $ x =-1 $, the original series is $ \ DPS {\ sum \ frac {n ^ 2} {(-1 + 1/n) ^ n} = \ sum \ frac {(-1) ^ NN ^ 2} {(1 + 1/(-N )) ^ {-n \ cdot (-1) }}$ divergence (the wildcard does not tend to be $0 $ ). therefore, the convergence field of the original series is $ \ sed {X; | x |> 1} $. by $ \ Bex \ frac {n ^ 2} {[(1 + 1/n) + 1/N] ^ n }=\ frac {n ^ 2} {(1 + 2/N) ^ {n/2 \ cdot 2 }}\ geq \ frac {n ^ 2} {e ^ 2} \ EEx $ know that the original series is at $ \ sed {X; | x |> 1} $ inconsistent convergence. end with $ \ beex \ Bea \ sev {\ frac {n ^ 2} {(x + 1/n) ^ n }}& \ Leq \ frac {n ^ 2} {(1 + \ ve-1/N) ^ n} \ quad \ sex {| x | \ geq 1 + \ ve }\\& \ Leq \ frac {n ^ 2} {(1 + \ ve/2) ^ n} \ quad \ sex {n \ geq 2/\ ve} \ & \ Leq \ sex {\ frac {n} {\ SQRT [3] {1 + \ ve /2 }}^ 2 \ sex {\ frac {1} {\ SQRT [3] {1 + \ ve/2 }}^ n \ & \ Leq \ sex {\ frac {2} {2 + \ ve} ^ {n/3} \ quad \ sex {n \ Gg 1} \ EEA \ eeex $ know the original series at $ \ sed {X; | x | \ geq 1 + \ ve} \ (\ forall \ ve> 0) $ consistent convergence.

 

6 ($2 \ times 10' = 20' $)

(1) proof: When $0 <x <\ PI/2 $, $2/\ pI <\ SiN x/x <1 $.

Proof: $ \ Bex \ SiN x = \ int_0 ^ x \ cos t \ rd t <\ int_0 ^ x \ rd t = x; \ EEx $ by $ (\ SiN x) ''=-\ SiN x <0 $ \ SiN x $ at $ (0, \ PI/2) $ is a concave function, and $ \ beex \ Bea \ SiN x & =\ sin (1-2x/\ PI) \ cdot 0 + 2x/\ pi \ cdot \ PI/2) \ & \ geq (1-2x/\ PI) \ cdot \ sin 0 + 2x/\ pi \ cdot \ sin \ PI/2 = 2x/\ pi. \ EEA \ eeex $

 

(2) set the function $ f (x) $ in the closed range $ [a, B] $ the secondary function can be micro, and $ f'' (x) <0 $, then $ \ Bex \ frac {f (a) + F (B )} {2} \ Leq \ frac {1} {B-a} \ int_a ^ B f (t) \ RD T. \ EEx $

Proof: by $ f'' (x) <0 $ $ F $ is a concave function, while $ \ beex \ Bea \ int_a ^ B f (x) \ rd x & =\ int_a ^ B f \ sex {\ frac {B-x} {B-a} \ cdot A + \ frac {X-A} {B-} \ cdot B} \ RD x \ & \ geq \ int_a ^ B \ SEZ {\ frac {B-x} {B-a} \ cdot F () + \ frac {X-A} {B-a} \ cdot F (B )} \ RD x \\\\=\ frac {B-a} {2} [F (a) + F (B)]. \ EEA \ eeex $

 

7 ($15 '$) evaluate the function $ \ DPS {f (x, y) = x ^ 2 + y ^ 2 + \ frac {3} {2} x + 1} $ in the set $ \ DPS {G = \ sed {(x, y ); 4x ^ 2 + y ^ 2-1 = 0 }}$.

Answer: use the resource name as the resource Resource Name (*, Y; \ lambda) = x ^ 2 + y ^ 2 + \ frac {3} {2} x + 1 + \ Lambda (4x ^ 2 + y ^ 2-1 ), \ EEx $ is composed of $ \ beex \ Bea l_x & = 2x + \ frac {3} {2} + 8 \ Lambda x = 0, \ l_y & = 2y + 2 \ Lambda y = 0, \ L _ \ Lambda & = 4x ^ 2 + y ^ 2-1 = 0 \ EEA \ eeex $ $ \ BEX (x, y) = \ sex {\ frac {1} {4 }, \ frac {\ SQRT {3 }}{ 2 }}\ mbox {or} \ sex {\ PM \ frac {1} {2}, 0 }. \ EEx $ again by $ \ Bex f \ sex {\ frac {1} {4 }, \ frac {\ SQRT {3 }}{ 2 }=\ frac {35} {16}, \ quad f \ sex {\ frac {1} {2 }, 0} = 2, \ quad f \ sex {-\ frac {1} {2 }, 0 }=\ frac {1} {2} \ EEx $ \ Bex \ max_gf =\ frac {35} {16 }, \ quad \ min_gf =\frac {1} {2 }. \ EEx $

 

8 ($ 15' $) set the infinite real sequence $ \ sed {a_n }, \ sed {B _n} $ meet $ \ Bex a _ {n + 1} = B _n-\ frac {na_n} {2n + 1}, \ Quad (n = 1, 2, \ cdots ). \ EEx $ test certificate:

(1) If $ \ sed {B _n} $ is bounded, $ \ sed {a_n} $ is also bounded;

(2) If $ \ sed {B _n} $ converges, $ \ sed {a_n} $ also converges.

Proof:

(1) set $ \ Bex M = \ MAX \ sed {2 \ sup_n | B _n |, | a_1 | }. \ EEx $ we use mathematical induction to learn easily $ | a_n | \ Leq M $. in fact, the recurrence step is $ \ Bex | A _ {n + 1} | \ Leq | B _n | + \ sev {\ frac {na_n} {2n + 1} \ Leq \ Frac. {m} {2} + \ frac {m} {2} = m. \ EEx $

(2) set $ B _n \ to B $ at $ \ Bex a _ {n + 1} = B _n-\ frac {na_n} {2n + 1 }, \ Quad (n = 1, 2, \ cdots ). \ EEx $ the upper limit and lower limit are $ \ Bex \ varlimsup _ {n \ To \ infty} a_n \ Leq B-\ frac {1} {2} \ varliminf _{ n \ To \ infty} a_n, \ varliminf _ {n \ To \ infty} a_n \ geq B-\ frac {1} {2} \ varlimsup _ {n \ To \ infty} a_n. \ EEx $ then $ \ beex \ Bea \ varlimsup _ {n \ To \ infty} a_n \ Leq B-\ frac {1} {2} \ SEZ {B -\ frac {1} {2} \ varlimsup _ {n \ To \ infty} a_n} \ Ra \ varlimsup _ {n \ To \ infty} a_n \ Leq \ frac {2B }{ 3 }, \\\ varliminf _ {n \ To \ infty} a_n \ geq B-\ frac {1} {2} \ SEZ {B-\ frac {1} {2} \ varliminf _ {n \ To \ infty} a_n} \ Ra \ varliminf _ {n \ To \ infty} a_n \ geq \ frac {2B} {3 }. \ EEA \ eeex $ therefore $ a_n \ to 2B/3 $.

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.