[Journal of mathematics at home University] 307th questions about Mathematics Analysis in 2006 of Huazhong Normal University

Source: Internet
Author: User

 

1. ($30 '$) Calculate the question.

(1) $ \ DPS {\ lim _ {x \ to 1} \ frac {\ sin ^ 2 (x-1) \ sin \ frac {1} {X-1 }}{ e ^ {X-1}-1 }}$.

(2) set $ Y = x ^ x + A ^ x $, evaluate $ y' $.

(3) $ \ DPS {\ int \ sex {\ ln x + \ frac {1 }{\ ln x }}\ RD x }$.

(4) set $ \ DPS {f (x, y) = x ^ y + (Y-1) ^ 2 \ arcsin \ SQRT {\ frac {x} {y }}$, evaluate $ f_x '(x, 1) $.

(5) $ \ DPS {\ iint_d (x + y) e ^ {x ^ 2 + y ^ 2} \ RD x \ RD y} $, $ d = \ sed {(x, y); x ^ 2 + y ^ 2 \ Leq 1} $.

(6) Evaluate $ \ DPS {I = \ int_l x \ sin Y \ RD X-\ cos y \ RD x} $, where $ L $ is the sine curve from $ O (0, 0) $ to $ A (\ Pi, 0) $ Y = \ SiN x $.

 

Answer:

(1) by $ \ Bex \ lim _ {x \ to1} \ frac {\ sin ^ 2 (x-1 )} {e ^ {X-1}-1} = \ lim _ {T \ to 0} \ frac {t ^ 2} {e ^ T-1} = \ lim _ {T \ to 0} \ frac {2 t} {e ^ t} = 0 \ EEx $ Zhi $ \ DPS {\ frac {\ sin ^ 2 (x-1 )} {e ^ {X-1}-1} = O (1) \ (x \ to 1)} $, it multiplied by a bounded amount $ \ DPS {\ sin \ frac {1} {X-1} $ is still an infinitely small amount, and the original limit $ = 0 $.

(2) $ \ Bex y' = (E ^ {x \ ln x}) '+ A ^ x \ ln a = x ^ X (\ ln x + 1) + A ^ x \ ln. \ EEx $

(3) know by segment credits $ \ Bex \ mbox {Original credits} = x \ ln x-\ int \ frac {1} {x \ ln x} \ cdot x \ RD X + \ int \ frac {1} {\ ln x} \ RD x = x \ ln x + C. \ EEx $

(4) $ \ Bex f_x '(x, 1) = \ frac {\ P (x ^ y) }{\ p x }|_{ (x, 1 )} = Yx ^ {Y-1} | _ {(x, 1)} = 1. \ EEx $

(5) from symmetry, original points $ = 0 $.

(6) by the Green formula, $ \ Bex I + \ int _ \ PI ^ 0-\ cos 0 \ RD x = \ iint _ {0 \ Leq x \ Leq \ pi \ atop 0 \ Leq Y \ leq \ SiN x} 0 \ RD x \ rd y \ rA I =-\ pi. \ EEx $

 

2. ($ 20' $) set $ f (x) $ on $ (A, + \ infty) $, and $ f' (x) $ on $ (A, X, + \ infty) $ bounded upper. proof:

(1) $ f (x) $ consistent continuity on $ (A, + \ infty) $;

(2) $ \ DPS {f (a ^ +) = \ lim _ {x \ To a ^ +} f (x)} $ exists, however, $ \ DPS {\ lim _ {x \ to + \ infty} f (x)} $ does not necessarily exist;

(3) If $ \ DPS {\ lim _ {x \ to + \ infty} f (x)} $ exists, and $ \ Bex \ lim _ {x \ To a ^ +} f (x) = \ lim _ {x \ To a ^ +} f (x ), \ EEx $ then $ f' (x) $ has at least one zero point on $ (A, + \ infty) $.

 

Proof:

(1) set $ | f' | \ Leq M $, then $ \ Bex \ forall \ ve> 0, \ exists \ Delta = \ frac {\ ve} {m}> 0, \ st | X-x' | <\ Delta \ rA | f (x) -F (x') | = | f' (\ xi) | \ cdot | X-x' | <\ ve. \ EEx $

(2) from $ \ Bex \ forall \ ve> 0, \ exists \ Delta = \ frac {\ ve} {m}> 0, \ st a <X, x' <A + \ Delta \ rA | f (x)-f (x ') | <\ ve \ EEx $ and the kernel convergence criterion of the Function Limit $ F (a ^ +) $. $ f (x) = \ SiN x $ knows $ F (+ \ infty) $ does not necessarily exist.

(3) Use the reverse verification method. if $ F' $ has no zero point, set $ F'> 0 $. while $ F $ strictly increments, $ \ Bex x <A + 1 <A + 2 <Y \ rA f (x) <f (a + 1) <f (a + 2) <f (y ). \ EEx $ order $ x \ To a ^ + $, $ Y \ to + \ infty $ we found $ \ Bex f (a ^ +) \ Leq f (a + 1) <f (a + 2) \ Leq F (+ \ infty ). \ EEx $ This is in conflict with the question. therefore, there is a conclusion.

 

3. ($ 20' $) set $ f (x) $ continuous on $ [] $, $ F (0) = F (1) $. proof:

(1) $ \ DPS {x_0 \ In \ SEZ {0, \ frac {1} {2 }}$ makes $ \ DPS {f (x_0) = f \ sex {x_0 + \ frac {1} {2 }}$;

(2) Try to speculate: For any positive integer $ N $, whether $ \ DPS {x_0 \ In \ SEZ {0, \ frac {n-1} {n }}$ make $ \ DPS {f (x_0) = F \ sex {x_0 + \ frac {1} {n }}$, and prove your conclusion.

 

Proof:

(1) set $ \ DPS {f (x) = f (x)-f \ sex {x + \ frac {1} {2 }}$, then $ \ Bex F (0) f \ sex {\ frac {1} {2 }=\ SEZ {f (0) -F \ sex {\ frac {1} {2 }}\ cdot \ SEZ {f \ sex {\ frac {1} {2}-F (1 )} =-\ SEZ {f (0)-f \ sex {\ frac {1} {2 }}^ 2 \ Leq 0. \ EEx $ is established by the Intermediate Value Theorem of the continuous function.

(2) Our asserted conclusion is true. in fact, set $ \ DPS {f (x) = f (x)-f \ sex {x + \ frac {1} {2 }}$, then $ \ bee \ label {307_3_sum} f (0) + f \ sex {\ frac {1} {n }}+ \ cdots + f \ sex {\ frac {n-1} {n }}= 0. \ EEE $ use reverse verification to prove the conclusion. if $ \ Bex f (x) \ NEQ 0, \ quad x \ In \ SEZ {0, \ frac {n-1} {n }}, \ EEx $ may be set to $ F> 0 $, which is in conflict with \ eqref {307_3_sum.

 

4. ($10 '$) set $ f (x) $ to be continuous on $ [0, ++ \ infty) $, and $ f (x)> 0 $, note $ \ Bex \ varphi (x) = \ frac {\ int_0 ^ x TF (t) \ RD t} {\ int_0 ^ x F (t) \ RD t }. \ EEx $

(1) Evaluate $ \ DPS {\ lim _ {x \ to 0 ^ ++} \ varphi (t)} $;

(2) proof: $ \ varphi (x) $ increases monotonically on $ (0, ++ \ infty) $.

 

Proof:

(1) $ \ Bex \ lim _ {x \ to 0 ^ ++} \ varphi (X) = \ lim _ {x \ to 0 ^ +} \ frac {XF (x)} {f (x)} = 0. \ EEx $

(2) $ \ beex \ Bea \ varphi '(x) & =\ frac {XF (x) \ int_0 ^ XF (t) \ rd t-f (x) \ int_0 ^ x TF (t) \ RD t} {\ SEZ {\ int_0 ^ x F (t) \ RD t} ^ 2 }\\\&=\ frac {f (x) \ int_0 ^ x (x-t) f (t) \ RD t} {\ SEZ {\ int_0 ^ x F (t) \ RD t} ^ 2} \ &> 0, \ quad x> 0. \ EEA \ eeex $

 

5. ($ 10' $) proof: If $ \ DPS {\ VSM {n} a_n} $ absolutely converges, then $ \ Bex \ VSM {n} a_n (a_1 + A_3 + \ cdots + A _ {2n-1}) \ EEx $ is also absolutely converged.

 

Proof: from $ \ DPS {\ VSM {n} a_n} $ absolute convergence knowledge $ \ DPS {\ VSM {n} | a_n |}$ convergence. according to the comparison principle, $ \ DPS {\ VSM {n} | A _ {2n-1} |}$ convergence, its part and $ \ Bex s_n = | a_1 | + | A_3 | + \ cdots + | A _ {2n-1} | \ EEx $ are bounded, set the ing to $ m> 0 $. then $ \ Bex | a_n (a_1 + A_3 + \ cdots + A _ {2n-1}) | \ Leq m \ cdot | a_n |. \ EEx $ conclusions on the reuse of comparison principles.

 

6. ($ 15' $) set $ f (x) $ to continuous on $ \ DPS {\ SEZ {0, \ frac {\ PI} {2 }}$. proof:

(1) $ \ sed {\ sin ^ NX} $ inconsistent convergence on $ \ DPS {\ SEZ {0, \ frac {\ PI} {2 }}$;

(2) $ \ sed {(\ sin ^ Nx) f (x) }$ in $ \ DPS {\ SEZ {0, \ frac {\ PI} {2 }}$ the condition for consistent convergence is $ \ DPS {f \ sex {\ frac {\ PI} {2 }}= 0} $.

 

Proof:

(1) Use the reverse verification method. if $ \ sed {\ sin ^ NX} $ is uniformly converged on $ \ DPS {\ SEZ {0, \ frac {\ PI} {2 }}$, then the Limit Function $ \ Bex g (x) =\ sedd {\ BA {ll} 0, & 0 \ Leq x <\ frac {\ PI} {2} \ 1, & X = \ frac {\ PI} {2} \ EA} \ EEx $ continuous. this is a conflict.

(2) $ \ rA $: by $ \ sed {(\ sin ^ Nx) f (x) }$ in $ \ DPS {\ SEZ {0, \ frac {\ PI} {2 }}$ consensus Upper Limit Function $ \ Bex h (x) = \ sedd {\ BA {ll} 0, & 0 \ Leq x <\ frac {\ PI} {2} \ f \ sex {\ frac {\ PI} {2 }}, & amp; X = \ frac {\ PI} {2} \ EA} \ EEx $ continuous, $ \ Bex 0 =\lim _ {x \ To \ frac {\ PI} {2} h (x) = f \ sex {\ frac {\ PI} {2 }}. \ EEx $ \ la $: by $ \ DPS {f \ sex {\ frac {\ PI} {2 }=0 }$ $ \ bee \ label {307_6_con} \ forall \ ve> 0, \ exists \ Delta> 0, \ ST \ frac {\ PI} {2}-\ Delta \ Leq x \ Leq \ frac {\ PI} {2} \ rA | (\ sin ^ Nx) f (x) | \ Leq | f (x) | =\ sev {f (x) -F \ sex {\ frac {\ PI} {2 }}< \ ve. \ EEE $ and for $ \ DPS {x \ In \ SEZ {0, \ frac {\ PI} {2}-\ Delta} $, $ \ Bex | (\ sin ^ Nx) f (x) | \ Leq \ sev {\ sin ^ n \ sex {\ frac {\ PI} {2}-\ Delta} \ cdot \ max | f | \ Leq \ sex {\ frac {\ PI} {2}-\ Delta} ^ n \ cdot \ max | f |. \ EEx $ then $ \ bee \ label {307_6_lim} \ exists \ n = N (\ delta) = N (\ ve)> 0, \ st n \ geq n \ Ra \ Max _ {x \ In \ SEZ {0, \ frac {\ PI} {2}-\ Delta} | (\ sin ^ Nx) f (x) | <\ ve. \ EEE $ conclusion: \ eqref {307_6_con} And \ eqref {307_6_lim.

 

7. ($10 '$) set $ f (x, y, z) $ is the $ N $ function on $ \ BBR ^ 3 $ (for any $ T> 0 $, $ F (TX, Ty, Tz) = t ^ NF (x, y, z) $) with a first-order continuous partial derivative, $ f_z (x, y, z) \ NEQ 0 $. if the equation $ f (x, y, z) = 0 $ determines the approximate implicit function $ z = g (x, y) $. proof: $ z = g (x, y) $ must be a homogeneous function.

 

Proof:

(1) Permit: Micro functions $ F (x_1, \ cdots, X_n) $ is $ N $ RMB homogeneous function only when $ \ Bex \ sum X_ I F _ {X_ I} '= NF. \ EEx $ \ rA $: For any fixed $ x_1, \ cdots, X_n $, for $ \ Bex F (tx_1, \ cdots, tx_n) = t ^ NF (x_1, \ cdots, X_n) \ EEx $ get the value of $ T $ at $ T = 1 $ after evaluate. $ \ la $: For any fixed $ x_1, \ cdots, X_n $, note $ \ Bex \ PHI (t) =\ frac {1} {t ^ n} f (tx_1, \ cdots, tx_n), \ EEx $ then $ \ PHI (1) = f (x_1, \ cdots, x_n) $, $ \ Bex \ Phi '(t) = \ frac {\ sum (tx_ I) F _ {X_ I}' (tx_1, \ cdots, tx_n) -n f (tx_1, \ cdots, tx_n)} {t ^ {n + 1 }}= 0. \ EEx $ so $ \ PHI (t) = \ PHI (1) $.

(2) Evidence-based questions: $ \ beex \ Bea xz_x + yz_y & = x \ cdot \ sex {-\ frac {f_x '} {f_y'} + Y \ cdot \ sex {-\ frac {f_y'} {f_z' }}\\& =-\ frac {xf_x '+ yf_y'} {f_z' }\\\& =\ frac {zf_z'} {f_z '} \ quad \ sex {xf_x '+ yf_y' + zf_z' = NF = 0 }\& = z. \ EEA \ eeex $

 

8. ($ 20' $) set $ f (x, y) $ to have a second-order continuous partial derivative on $ \ BBR ^ 2 $. proof:

(1) For $ \ BBR ^ 2 $ any smooth and simple closed curve $ L $, always $ \ Bex \ int_l \ frac {\ p f} {\ P \ VEC {n }}\ rd s = \ iint_d \ sex {\ frac {\ P ^ 2f} {\ P x ^ 2} + \ frac {\ P ^ 2 f} {\ P y ^ 2 }}\ RD x \ RD y, \ EEx $ where $ \ VEC {n} $ is the outer normal direction of $ L $, $ \ DPS {\ frac {\ p f }{\ p \ VEC {n }}$ $ f (x, y) $ Number of Wizard along $ \ VEC {n} $, $ d $ is a bounded closed area enclosed by $ L $;

(2) $ f (x, y) $ is the Harmonic Function on $ \ BBR ^ 2 $ (I .e. $ \ DPS {\ frac {\ P ^ 2f} {\ P x ^ 2} + \ frac {\ P ^) 2 f} {\ P y ^ 2} = 0} $) is a smooth and closed curve $ L $ for $ \ BBR ^ 2 $, always $ \ DPS {\ int_l \ frac {\ p f} {\ P \ VEC {n }}\ rd s = 0 }$.

 

Proof:

(1) $ \ beex \ Bea \ int_l \ frac {\ p f }{\ p \ VEC {n }}\ rd s & =\ int_l \ SEZ {f_x '\ cos (\ VEC {n }, \ VEC {x}) + f_y '\ cos (\ VEC {n}, \ VEC {y })} \ RD s \ & =\ int l f_x '\ RD y + f_y' (-\ rd x) \ & =\ iint_d (F _ {XX} ''+ F _ {YY}'') \ RD x \ RD y. \ EEA \ eeex $

(2) apparently.

 

9. ($15 '$) set $ N $ to a positive integer. The given equation $ x ^ N + x = 1 $.

(1) This equation only has a unique positive root $ x_n \ In () $.

(2) $ \ DPS {\ vlm {n} x_n = 1} $.

 

Proof:

(1) set $ f_n (x) = x ^ N + X-1 $, then $ \ Bex f_n (0) =-1 <0 <1 = f_n (1 ). \ EEx $ A root on $ (0, 1) $ f_n (x) = 0 $. \ Bex f_n' (x) = NX ^ {n-1} + 1> 0, \ quad x> 0, \ EEx $ and $ f_n (X) = 0 $ only this root $ x_n $ in $ (0, \ infty) $.

(2) by $ \ Bex f_n (x)> F _ {n + 1} (x ), \ quad 0 <x <1 \ EEx $ Zhi $ \ Bex 0 = f_n (x_n) = F _ {n + 1} (x_n ). \ EEx $ strictly incrementing by $ F _ {n + 1} $ X _ {n + 1}> x_n $. therefore, the increment of $ \ sed {x_n} $ has an upper bound. the limit $ L \ Leq 1 $ exists. if $ L <1 $, $ \ Bex 1 = x_n + x_n ^ n \ Leq x_n + L ^ n. \ EEx $ order $ n \ To \ infty $1 \ Leq L $. this is a conflict. therefore, $ L = 1 $.

[Journal of mathematics at home University] 307th questions about Mathematics Analysis in 2006 of Huazhong Normal University

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.