Write a program to solve a Sudoku puzzle by filling the empty cells.
Empty cells are indicated by the character‘.‘
.
You may assume that there will be only one unique solution.
A Sudoku puzzle...
... And its solution numbers marked in red.
Method: the key to solving this problem is to try it one by one in the alternative set. Not every space can start with a unique fixed number.
class Solution {public: void solveSudoku(vector<vector<char> > &board) { vector<set<char>> rowMap(9); vector<set<char>> colMap(9); vector<set<char>> boxMap(9); vector<pair<int,int>> blank; for(int i=0;i<9;i++) { for(int j=0;j<9;j++) { if(board[i][j]==‘.‘) { blank.push_back(pair<int,int>(i,j)); continue; } rowMap[i].insert(board[i][j]); } } for(int j=0;j<9;j++) { for(int i=0;i<9;i++) { if(board[i][j]==‘.‘) continue; colMap[j].insert(board[i][j]); } } for(int i=0;i<9;i=i+3) { for(int j=0;j<9;j=j+3) { vector<int> mp(10,0); for(int k=0;k<3;k++) { for(int m=0;m<3;m++) { if(board[i+k][j+m]==‘.‘) continue; boxMap[(i/3) * 3 +j/3].insert(board[i+k][j+m]); } } } } found = false; DFS(0,blank,rowMap,colMap,boxMap,board); }private: void DFS(int t, vector<pair<int,int>> &blank, vector<set<char>> &rowMap, vector<set<char>> &colMap, vector<set<char>> &boxMap, vector<vector<char> > &board) { if(t>=blank.size()) { found = true; } else { int i= blank[t].first; int j= blank[t].second; for(char digit =‘1‘;digit<=‘9‘;digit++) { if(rowMap[i].count(digit)>0 || colMap[j].count(digit)>0 || boxMap[i/3 * 3 + j/3].count(digit)>0) { continue; } board[i][j]=digit; rowMap[i].insert(digit); colMap[j].insert(digit); boxMap[i/3*3+j/3].insert(digit); DFS(t+1,blank,rowMap,colMap,boxMap,board); rowMap[i].erase(digit); colMap[j].erase(digit); boxMap[i/3*3+j/3].erase(digit); if(found) return; } } }private: bool found;};
[Leetcode] Sudoku solver (iteration)