Mooculus calculus-2: Sequence and progression study Note 4. Alternating series

Source: Internet
Author: User

This course (MOOCULUS-2 "sequences and Series") was taught by Ohio State University on the Coursera platform in 2014.

PDF textbook Download sequences and Series

This series of learning notes PDF download (academia.edu) MOOCULUS-2 solution

Summary

    • If $$\sum_{n=1}^\infty |a_n|$$ converges (i.e. absolutelyconvergent), then $$\sum_{n=1}^\infty a_n$$ converges (i.e. conditionally convergent).
    • Suppose that $ (a_n) $ was a decreasing sequence of positive numbers and $$\lim_{n\to\infty}a_n=0$$ then th E Alternating series $$\sum_{n=1}^\infty ( -1) ^{n+1} a_n$$ converges.
    • For a alternating series $ $s _n=\sum_{n=1}^{\infty} ( -1) ^n\cdot a_n$$ the test steps:
      • If $$\lim_{n\to\infty}a_n\neq0$$ then it diverges;
      • If $$\lim_{n\to\infty}a_n=0$$ and $a _n$ converges, then it absolutely converges;
      • If $$\lim_{n\to\infty}a_n=0$$ and $a _n$ diverges, then it conditionally converges.

Exercises 4.1

Determine whether each series converges absolutely, converges conditionally, or diverges.

1. $$\sum_{n=1}^\infty ( -1) ^{n-1}{1\over 2n^2+3n+5}$$ solution: $$\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\ Infty}{1\over 2n^2+3n+5} < \sum_{n=1}^{\infty}{1\over 2n^2}\to\text{converge}$$ Thus it converges absolutely.

2. $$\sum_{n=1}^\infty ( -1) ^{n-1}{3n^2+4\over 2n^2+3n+5}$$ solution: $$\lim_{n\to\infty}|a_n|=\lim_{n\to\ Infty}{3n^2+4 \over 2n^2+3n+5}={3\over2}\neq0$$ Thus it diverges.

3. $$\sum_{n=1}^\infty ( -1) ^{n-1}{\ln n\over n}$$ Solution: $$\lim_{n\to\infty}{\ln n\over n}=0$$ and $${\ln n\o Ver n} > {1\over n}\to\text{diverge}$$ Thus it converges conditionally.

4. $$\sum_{n=1}^\infty ( -1) ^{n-1} {\ln n\over n^3}$$ Solution: $$\lim_{n\to\infty}{\ln n\over n^3}=0$$ and $${\l n N\over n^3} < {n\over n^3}={1\over n^2}\to\text{converge}$$ Thus it converges absolutely.

5. $$\sum_{n=2}^\infty ( -1) ^n{1\over \ln n}$$ Solution: $$\lim_{n\to\infty}{1\over\ln n}=0$$ and $${1\over\ln N } > {1\over n}\to\text{diverge}$$ Thus it converges conditionally.

6. $$\sum_{n=0}^\infty ( -1) ^{n} {3^n\over 2^n+5^n}$$ solution: $$\lim_{n\to\infty}{3^n\over 2^n+5^n}=0$$ and $ $\lim_{n\to\infty}a_{n+1}/a_n=\lim_{n\to\infty}{3^{n+1}\over 2^{n+1}+5^{n+1}}\cdot{2^n+5^n\over 3^n}$$ $$=\lim_{n \to\infty}{3\cdot (2^n+5^n) \over 2^{n+1}+5^{n+1}}={3\over5} < 1$$ Thus it converges absolutely.

7. $$\sum_{n=0}^\infty ( -1) ^{n} {3^n\over 2^n+3^n}$$ solution: $$\lim_{n\to\infty}{3^n\over 2^n+3^n}=1\neq0$ $ Thus It diverges.

8. $$\sum_{n=1}^\infty ( -1) ^{n-1} {\arctan n\over n}$$ Solution: $$\lim_{n\to\infty}{\arctan n\over n}=\lim_{n \to\infty}{1\over 1+n^2}=0$$ and $${\arctan n\over n} > {1\over n}\to\text{diverge}$$ Thus it converges conditionally.

Exercises 4.2

Determine whether the following series converge or diverge.

1. $$\sum_{n=1}^\infty {( -1) ^{n+1}\over 2n+5}$$ Solution: $$\lim_{n\to\infty}{1\over 2n+5}=0$$ Thus it converges.

2. $$\sum_{n=4}^\infty {( -1) ^{n+1}\over \sqrt{n-3}}$$ Solution: $$\lim_{n\to\infty}{1\over \sqrt{n-3}}=0$$ Thus it converges.

3. $$\sum_{n=1}^\infty ( -1) ^{n+1}{n\over 3n-2}$$ Solution: $$\lim_{n\to\infty}{n\over 3n-2}={1\over3}\neq0$ $ Thus It diverges.

4. $$\sum_{n=1}^\infty ( -1) ^{n+1}{\ln n\over n}$$ Solution: $$\lim_{n\to\infty}{\ln n\over n}=0$$ Thus it conver Ges.

5. Approximate $$\sum_{n=1}^\infty ( -1) ^{n+1}{1\over n^3}$$ to the decimal places. Solution: $$\int_{n}^{\infty}{1\over x^3}dx=-{1\over2}\cdot{1\over x^2}\big|_{n}^{\infty}= {1\over2}\cdot {1\over n^2} < {1\over100}\rightarrow N \geq 8$$ Adding up the first 8 terms and the result is $0.9007447\doteq0.90$.

6. Approximate $$\sum_{n=1}^\infty ( -1) ^{n+1}{1\over n^4}$$ to the decimal places. Solution: $$\int_{n}^{\infty}{1\over x ^4}dx=-{1\over3}\cdot{1\over X^3}\big|_{n}^{\infty}={1\over3}\cdot {1\over N^3} < {1\over100}\rightarrow n\geq4$$ Adding up the first 4, and the result is $0.9459394\doteq0.95$.

Additional Exercises

1. Suppose $$\sum_{n=1}^{\infty}|a_n|$$ converges, what about $$\sum_{n=1}^{\infty}a_n$$ solution: $$\sum_{n= 1}^{\infty}|a_n|\ \text{converges}$$ $$\rightarrow\sum_{n=1}^{\infty}2\cdot|a_n|\ \text{converges}$$ We have $$0\leq a_n+|a_n|\leq2\cdot|a_n|$$ By comparison test, $$\sum_{n=1}^{\infty} (a_n+|a_n|) $$ converges. and $$\sum_{n=1}^{\infty} (a_n+|a_n|) -\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\infty}a_n$$ converges.

This exercise shows "absolutely converge implies converge".

2. $$\sum_{j=5}^{\infty}{2j^2+j+2 \over 3j^5+j^4+5j^3+6}$$ converge or diverge?

Solution: $${2j^2+j+2 \over 3j^5+j^4+5j^3+6} < {3i^2\over3j^5}={1\over j^3}\to\text{converge}$$ by $p $- Series test and comparison test, it converges.

3. $$\sum_{n=2}^{\infty}{6\cdot ( -1) ^n \over 7n^{0.52}}$$ converge or diverge?

Solution: $$\lim_{n\to\infty}{6\over 7n^{0.52}}=0$$ and $${6\over 7n^{0.52}} > {1\over 7n^{0.52}}\to\text{ diverge}$$ Thus it converges conditionally.

4. $$\sum_{n=7}^{\infty}{4\cdot ( -1) ^{n+1}\over n^2+3n+5}$$ converge or diverge?

Solution: $$\lim_{n\to\infty}{4\over n^2+3n+5}=0$$ and $${4\over n^2+3n+5} < {4\over N^2}\to\text{converge }$$ Thus it converges absolutely.

Mooculus calculus-2: Sequence and progression study Note 4. Alternating series

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.